
ALAGAPPA UNIVERSITY
(Accredited with ‘A+’ Grade by NAAC (with CGPA: 3.64) in the Third Cycle and Graded as

category - I University by MHRD-UGC)

(A State University Established by the Government of Tamilnadu)

KARAIKUDI – 630 003

DIRECTORATE OF DISTANCE EDUCATION

 B.C.A

 Second Year – Third Semester

 101 34 / 127 34

RELATIONAL DATABASE MANAGEMENT SYSTEM

(RDBMS) - LAB

Copy Right Reserved For Private Use only

Author:

Dr. C.Balakrishnan

Assistant Professor

Alagappa Institute of Skill Development

Alagappa University,

Karaikudi. 630 003.

“The Copyright shall be vested with Alagappa University”

All rights reserved. No part of this publication which is material protected by this copyright notice

may be reproduced or transmitted or utilized or stored in any form or by any means now known or

hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording

or by any information storage or retrieval system, without prior written permission from the

Alagappa University, Karaikudi, Tamil Nadu.

RELATIONAL DATABASE MANAGEMENT SYSTEM (RDBMS) - LAB

SYLLABI-BOOK MAPPING TABLE

SYLLABI Page NO

UNIT BLOCK 1 : TABLE MANIPULATION

14-17

1 Table creation, Renaming a Table, Copying another table, Dropping a Table

2
Table Description: Describing Table Definitions, Modifying Tables, Joining

tables, Number and Date functions.
17-36

 BLOCK 2 : SQL QUERIES AND SUB QUERIES

37-46

3 SQL Queries: Queries, Sub Queries, and Aggregate functions

4 DDL: Experiments using database DDL SQL statements
46-50

5 DML: Experiment using database DML SQL statements
51-53

6 DCL: Experiment using database DCL SQL statements
53-54

 BLOCK 3 : INDEX AND VIEW

55-58

7
Index : Experiment using database index creation, Renaming a index,

Copying another index, Dropping a index

8 Views: Create Views, Partition and locks
58-62

 BLOCK 4 : EXCEPTION HANDLING AND PL/SQL

63-68

9
Exception Handling: PL/SQL Procedure for application using exception

handling

10 Cursor: PL/SQL Procedure for application using cursors 68-72

11 Trigger: PL/SQL Procedure for application using triggers 72-75

12 Package: PL/SQL Procedure for application using package 75-79

13 Reports: DBMS programs to prepare report using functions 79-82

 BLOCK 5 : APPLICATION DEVELOPMENT

83-86

14

Design and Develop Application: Library information system, Students mark

sheet processing, Telephone directory maintenance, Gas booking and

delivering, Electricity bill processing, Bank Transaction, Pay roll processing.

Personal information system, Question database and conducting Quiz and

Personal diary

15 Model Question Paper 87-88

 Self-Instructional Material

 1

Introduction

Notes

INTRODUCTION

Background Concepts

RDBMS atands for "Relational Database Management System." An RDBMS is a

DBMS designed specifically for relational databases. Therefore, RDBMSes are a

subset of DBMSes.

A relational database refers to a database that stores data in a structured format,

using rows and columns. This makes it easy to locate and access specific values

within the database. It is "relational" because the values within each table are related

to each other. Tables may also be related to other tables. The relational structure

makes it possible to run queries across multiple tables at once.

While a relational database describes the type of database an RDMBS manages, the

RDBMS refers to the database program itself. It is the software that executes

queries on the data, including adding, updating, and searching for values. An

RDBMS may also provide a visual representation of the data. For example, it may

display data in a table like a spreadsheet, allowing you to view and even edit

individual values in the table. Some RDMBS programs allow you to create forms

that can streamline entering, editing, and deleting data.

Most well-known DBMS applications fall into the RDBMS category. Examples

include Oracle Database, MySQL, Microsoft SQL Server, and IBM DB2. Some of

these programs support non-relational databases, but they are primarily used for

relational database management.

A relational database is a digital database based on the relational model of data, as

proposed by E. F. Codd in 1970. A software system used to maintain relational

databases is a relational database management system (RDBMS). Many relational

database systems have an option of using the standard SQL (Structured Query

Language) for querying and maintaining the database.

Oracle

Oracle Corporation is an American multinational computer technology

corporation headquartered in Redwood Shores, California. The company sells

database software and technology, cloud engineered systems, and enterprise

software products—particularly its own brands of database management systems.

An Oracle database is a collection of data treated as a unit. The purpose of a

database is to store and retrieve related information. A database server is the key to

solving the problems of information management. In general, a server reliably

manages a large amount of data in a multiuser environment so that many users can

concurrently access the same data. All this is accomplished while delivering high

performance. A database server also prevents unauthorized access and provides

efficient solutions for failure recovery.

Oracle database (Oracle DB) is a relational database management system (RDBMS)

from the Oracle Corporation. Originally developed in 1977 by Lawrence Ellison

and other developers, Oracle DB is one of the most trusted and widely-used

relational database engines.

Self-Instructional Material

2

Introduction

Notes

The system is built around a relational database framework in which data objects

may be directly accessed by users (or an application front end) through structured

query language (SQL). Oracle is a fully scalable relational database architecture and

is often used by global enterprises, which manage and process data across wide and

local area networks. The Oracle database has its own network component to allow

communications across networks.

Oracle DB is also known as Oracle RDBMS and, sometimes, just Oracle.

Oracle Database is the first database designed for enterprise grid computing, the

most flexible and cost effective way to manage information and applications.

Enterprise grid computing creates large pools of industry-standard, modular storage

and servers. With this architecture, each new system can be rapidly provisioned

from the pool of components. There is no need for peak workloads, because

capacity can be easily added or reallocated from the resource pools as needed.

The database has logical structures and physical structures. Because the physical

and logical structures are separate, the physical storage of data can be managed

without affecting the access to logical storage structures.

A key feature of Oracle is that its architecture is split between the logical and the

physical. This structure means that for large-scale distributed computing, also

known as grid computing, the data location is irrelevant and transparent to the user,

allowing for a more modular physical structure that can be added to and altered

without affecting the activity of the database, its data or users. The sharing of

resources in this way allows for very flexible data networks whose capacity can be

adjusted up or down to suit demand, without degradation of service. It also allows

for a robust system to be devised as there is no single point at which a failure can

bring down the database, as the networked schema of the storage resources means

that any failure would be local only.

Oracle DB editions are hierarchically broken down as follows:

 Enterprise Edition: Offers all features, including superior performance and

security, and is the most robust

 Standard Edition: Contains base functionality for users that do not require

Enterprise Edition’s robust package

 Express Edition (XE): The lightweight, free and limited Windows and

Linux edition

 Oracle Lite: For mobile devices

Oracle Enterprise Edition:
Enterprise Edition is the full (top of the range) version or the Oracle Database

Server. Options like RAC, Partitioning, Spatial, etc. can be purchased separately to

enhance the functionality of the database.

Oracle Standard Edition:
Standard Edition is designed for smaller businesses and enterprises. It offers a

subset of the features/ functionality implemented in Enterprise Edition. Database

options like Data Guard, Partitioning, Spatial, etc. is not available with Standard

Edition (from 10g one can use RAC with Standard Edition). Standard Edition can

only be licensed on servers with a maximum capacity of four processors.

 Self-Instructional Material

 3

Introduction

Notes

Oracle Standard Edition One:
Standard Edition One is a low cost, entry-level version of the Oracle Standard

Edition database server. Standard Edition One can only be licensed on small servers

with a maximum capacity of two processors.

Oracle Personal Edition:
Personal Oracle is a single user version of the database server. It is mostly the same

as Enterprise Edition, but doesn't support advanced options like RAC, Streams,

XMLDB, etc.

Oracle XE:
Express Edition (XE) is a free, downloadable version of the Oracle database server.

Oracle XE can only be used on single processor machines. It can only manage up to

4 GB of data and 1 GB of memory. ISVs can embed XE in 3rd party products and

redistribute it freely.

Oracle Lite:
Oracle Light is a database engine that can be used on mobile platforms like cell

phones and PDA's.

Oracle Express Edition (XE)

This practical manual uses Oracle Express Edition (XE) for demonstration of

code and queries. The main features of Oracle XE are as follows:

 Oracle Database XE is an entry level database available on Windows and

Linux operating systems. XE is built with the same code base as Oracle

Database 11g Release 2, so scaling XE to other editions can be easily

achieved.

 Oracle Database XE is a good starter database for DBAs and developers

who need a free database for training and deployment. Independent

Software Vendors (ISVs) and hardware vendors can freely distribute

Oracle Database XE along with their products, thus adding value to their

own products.

 Educational institutions can freely use Oracle Database XE for their

curriculum.

The Oracle XE provides wide range of facilities as follows:

Developers:

 Connect Oracle Database to your favorite programming languages and dev

environments including Java, .NET, Python, Node.js, Go, PHP, C/C++ and

more.

 Learn SQL on the world's leading relational database, or experiment with

Oracle's native support for JSON documents and spatial & graph data.

 Use free dev tools and IDEs from Oracle including SQL Developer, SQLcl,

and SQL Developer Data Modeler.

 Install free Oracle REST Data Services (ORDS) to REST-enable your

database.

Self-Instructional Material

4

Introduction

Notes

 For low-code app development, run Oracle APEX on top of ORDS and XE

at no extra cost to rapidly build data-centric web apps that look beautiful in

mobile and desktop browsers.

DBAs:

Test drive advancements in Oracle Database that make life easier for DBAs and

other administrators using free XE. With XE, any administrator can benefit from

playing with many of the advanced features of Oracle Database.

 Manage multiple Oracle Databases in one place with Oracle Multitenant

pluggable databases.

 Accelerate database queries using table partitions.

 Get more from database storage with data compression.

 Backup your whole database using Oracle RMAN.

 For security and compliance, encrypt data at rest with Transparent Data

Encryption, set database audit policies to track data access, and configure

Database Vault to prevent unauthorized access by privileged users.

Data Scientists:

Oracle Database provides data scientists with sheer analytic power, and XE has it

all. See what that means.

 Dramatically accelerate queries on large data sets using Oracle In-Memory

Column Store.

 Reduce complex analysis to concise SQL statements with Advanced

Analytics, including Data Mining SQL.

 Build your analysis graphically in Oracle’s free Data Miner UI.

 Quickly load data into your database using Data Pump, SQL*Loader,

external tables, or SQL Developer.

 If you prefer R programming, Oracle Database supports that too.

Educators:

Teachers and students can freely use XE for database curriculum and instruction.

Students can install it on a laptop to work wherever, whenever - rather than being

tethered to a computer lab.

 Suite of courseware available from Oracle Academy.

 No licensing costs.

 Easy to install.

 A full-featured database.

Independent Software Vendors (ISVs)

In need of a database with all of the features and a small footprint, then look no

further than XE.

 Embed in your software.

 Distribute with your software.

 Install on customer premises for proof of concept.

 Deliver comprehensive prototypes to your prospects.

Everyone

Oracle Database XE is well suited to users large and small. For example:

 Startups working on a limited budget who need to begin development

immediately.

 Self-Instructional Material

 5

Introduction

Notes

 Non-profits and other organizations who want an Oracle Database, and it

does not need to be a fully supported edition.

 Software developers needing to demonstrate their apps to customers.

 Anyone who wants a private sandbox for database evaluation, testing, and

proof-of-concept projects.

Installation of Oracle Express Edition (XE)

The Oracle Database XE provides an Oracle database and tools for managing the

database.

Oracle Database XE supports the following development environments:

 Oracle SQL Developer: Oracle SQL Developer is a graphical version

of SQL*Plus that gives database developers a convenient way to

perform basic tasks. You can connect to any target Oracle Database XE

schema using standard Oracle database authentication. Once connected,

you can perform operations on objects in the database.

Download and install Oracle SQL Developer from:

http://www.oracle.com/technetwork/developer-tools/sql-developer/overvie

w/index.html

 Oracle Application Express: Oracle Database XE includes Oracle

Application Express, a rapid web application development tool for the

Oracle database. Oracle Application Express is enabled by default in

Oracle Database XE.

 Java: Java is an open-source programing language that is designed for

use in the distributed environment of the Internet. You can use Oracle

JDeveloper, which is a free integrated Java development environment

with support for the full development life cycle.

Download and install Oracle JDeveloper from:

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.h tml

 .NET and Visual Studio: Visual Studio is an integrated development

environment by Microsoft for building .NET applications. .NET is a

software framework for Microsoft Windows operating systems.

Download and install Oracle Data Access Components (ODAC) for Windows from:

http://www.oracle.com/technetwork/topics/dotnet/downloads/index.html

 PHP

PHP is an open-source server-side embedded scripting language that is designed for

Web development and can be embedded in HTML. You can use the following PHP

product:

 PHP: Download and install from: http://www.php.net

For more information on Oracle Database XE, see the following:

 Oracle Database XE home page on the Oracle Technology Network:

https://www.oracle.com/database/technologies/xe-downloads.html

 Oracle Database XE Documentation Library:

Click the appropriate link on the Oracle Database XE home page on the Oracle

Technology Network; or from the system menus, get to Oracle Database 11g

Express Edition and select Get Help, then Read Documentation.

http://www.oracle.com/technetwork/developer-tools/sql-developer/overvie
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.h
http://www.oracle.com/technetwork/topics/dotnet/downloads/index.html
http://www.php.net/
https://www.oracle.com/database/technologies/xe-downloads.html

Self-Instructional Material

6

Introduction

Notes

 Discussion forum:

Click the appropriate link on the Oracle Database XE home page on the Oracle

Technology Network; or from the system menus, get to Oracle Database 11g

Express Edition and select Get Help, then Go to Online Forum.

System Requirements

Oracle provides 32-bit (Windows x86) and 64-bit (Windows x64) versions of

Oracle Database XE server and client.

The 32-bit database server runs on 32-bit Windows only. The 64-bit database server

and client runs on Windows x64 only. See Table, " Oracle Database XE

Requirements for Microsoft Windows 64-bit" for supported operating systems. The

32-bit database client runs on both 32-bit Windows and Windows x64.

Table, " Oracle Database XE Requirements for Microsoft Windows 64-bit"

provides system requirements for Oracle Database XE for Microsoft Windows 64-

bit

Oracle Database XE Requirements for Microsoft Windows 64-bit

Requirement Value

System architecture AMD64 and Intel EM64T

Operating system

One of the following 64-bit Microsoft Windows x64

operating systems:

 Windows Server 2008 x64 - Standard, Enterprise,

Datacenter, Web, and Foundation Editions

 Windows Server 2008 R2 x64 - Standard,

 Enterprise, Datacenter, Web, and Foundation

Editions.

 Windows Server 2012 x64 - Standard, Datacenter,

Essentials, and Foundation Editions

 Windows Server 2012 R2 x64 - Standard,

 Datacenter, Essentials, and Foundation Editions

 Windows 7 x64 - Professional, Enterprise, and

Ultimate Editions.

 Windows 8 - Pro and Enterprise Editions

 Windows 8.1 - Pro and Enterprise Editions The

Server Core option is not supported.

Network protocol

The following protocols are supported:

 IPC

 Named Pipes

 SDP

 TCP/IP

 TCP/IP with SSL

Disk space 1.5 gigabytes minimum

RAM

256 megabytes minimum, 512 megabytes

recommended for Oracle Database XE. The operating

system itself may have a higher minimum

requirement.

 Self-Instructional Material

 7

Introduction

Notes

Installing Oracle Database XE

This section covers the following topics:

 Performing a Graphical User Interface Installation of the Server

 Performing a Silent Installation

 Enabling the Control Panel Services for .NET Stored Procedures and

Oracle Services for Microsoft Transaction Server

 Making Oracle Database XE Available to Remote Clients

Performing a Graphical User Interface Installation of the Server

Most users will install Oracle Database XE by downloading the installation

executable, double-clicking it, and answering graphical user interface prompts as

needed.

Before attempting to install Oracle Database XE 11.2 uninstall any existing Oracle

Database XE or database with the SID XE from the target system.

If you have an existing version of Oracle Database XE, then save your data by

exporting it to data files. After you install the new version of Oracle Database XE

import this data into the new database. For more information see Section 7,

"Importing and Exporting Data between 10.2 XE and 11.2 XE".

To perform a graphical user interface installation:

1. Log on to Windows with Administrative privileges.

You must be part of the Administrators group on Windows to

install Oracle Database XE. If you are logged in as a domain user,

ensure that you are connected to the network.

2. If the ORACLE_HOME environment variable has been set, then use

System in the Control Panel to delete it.

3. Go to the following Web site:

http://www.oracle.com/technetwork/database/express-

edition/downloads/in dex.html

4. Click Free Download and follow the instructions to select and

download the Microsoft Windows version of Oracle Database XE.

5. After downloading the Oracle Database XE installation executable,

setup.exe, double-click it.

"Oracle Database XE Character and Language Configurations" on

page 16 describes these character sets in detail.

6. In the Oracle Database 11g Express Edition - Install Wizard welcome

window, click Next.

Self-Instructional Material

8

Introduction

Notes

7. In the License Agreement window, select I accept the terms in the

license agreement and then click Next.

8. In the Choose Destination Location window, either accept the default or

click Browse to select a different installation directory. (Do not select a

directory that has spaces in its name.) Then click Next.

9. If you are prompted for a port number, then specify one.

The following port numbers are the default values:

 1521: Oracle database listener

 2030: Oracle Services for Microsoft Transaction Server

 8080: HTTP port for the Oracle Database XE graphical user interface

If these port numbers are not currently used, then the installation uses them

automatically without prompting you. If they are in use, then you will be

prompted to enter an available port number.

10. In the Specify Database Passwords window, enter and confirm the

password to use for the SYS and SYSTEM database accounts. Then

click Next.

 Self-Instructional Material

 9

Introduction

Notes

Note: The password for the INTERNAL and ADMIN Oracle Application Express

user accounts will be the same as the SYS and SYSTEM administrative user

accounts

11. In the Summary window, review the installation settings, and if you are

satisfied, click Install. Otherwise, click Back and modify the settings as

necessary.

12. In the InstallShield Wizard Complete window, click Finish.

SQL Commends in Oracle Express Edition (XE)

Oracle XE support the following data types:

1. char(size)

2. varchar2(size)

3. date

4. number(p,s)

5. long

6. raw/long raw

Different types of commands in SQL:

A).DDL commands: - To create a database objects

B). DML commands: - To manipulate data of a database objects

C). DQL command: - To retrieve the data from a database.

D).DCL/DTL commands: - To control the data of a database…

DDL commands:

1. The Create Table Command: - it defines each column of the table uniquely.

Each column has minimum of three attributes, a name , data type and size.

Syntax:

Create table <table name> (<col1> <datatype>(<size>),<col2>

<datatype><size>));

Ex:
 create table emp(empno number(4) primary key, ename char(10));

Self-Instructional Material

10

Introduction

Notes

2. Modifying the structure of tables.

a)add new columns

Syntax:

Alter table <tablename> add(<new col><datatype(size),<new col>datatype(size));

Ex:

alter table emp add(sal number(7,2));

3. Dropping a column from a table.

Syntax:

Alter table <tablename> drop column <col>;

Ex:
alter table emp drop column sal;

4. Modifying existing columns.

Syntax:

Alter table <tablename> modify(<col><newdatatype>(<newsize>));

Ex:

alter table emp modify(ename varchar2(15));

5. Renaming the tables

Syntax:

Rename <oldtable> to <new table>;

Ex:

rename emp to emp1;

6. truncating the tables.

Syntax:

Truncate table <tablename>;

Ex:

trunc table emp1;

7. Destroying tables.

Syntax:

Drop table <tablename>;

Ex:

drop table emp;

DML commands:

8. Inserting Data into Tables: - once a table is created the most natural thing to do

is load this table with data to be manipulated later.

Syntax:

 Self-Instructional Material

 11

Introduction

Notes

insert into <tablename> (<col1>,<col2>) values(<exp>,<exp>);

9. Delete operations.

a) remove all rows

Syntax:

 delete from <tablename>;

b) removal of a specified row/s

Syntax:

 delete from <tablename> where <condition>;

10. Updating the contents of a table.

a) updating all rows

Syntax:

Update <tablename> set <col>=<exp>,<col>=<exp>;

b) updating seleted records.

Syntax:

Update <tablename> set <col>=<exp>,<col>=<exp>

where <condition>;

11. Types of data constrains.

a) not null constraint at column level.

Syntax:

<col><datatype>(size)not null

b) unique constraint

Syntax:

Unique constraint at column level.

<col><datatype>(size)unique;

c) unique constraint at table level:

Syntax:

Create table tablename(col=format,col=format,unique(<col1>,<col2>);

d) primary key constraint at column level

Syntax:

<col><datatype>(size)primary key;

e) primary key constraint at table level.

Syntax:

Create table tablename(col=format,col=format

primary key(col1>,<col2>);

f) foreign key constraint at column level.

Syntax:

<col><datatype>(size>) references <tablename>[<col>];

g) foreign key constraint at table level

 Syntax:

foreign key(<col>[,<col>])references <tablename>[(<col>,<col>)

h) check constraint

Self-Instructional Material

12

Introduction

Notes

check constraint constraint at column level.

Syntax: <col><datatype>(size) check(<logical expression>)

i) check constraint constraint at table level.

Syntax: check(<logical expression>)

DQL Commands:

12. Viewing data in the tables: - once data has been inserted into a table, the next

most logical operation would be to view what has been inserted.

a) all rows and all columns

Syntax:

Select <col> to <col n> from tablename;

 Select * from tablename;

13. Filtering table data: - while viewing data from a table, it is rare that all the data

from table will be required each time. Hence, sql must give us a method of filtering

out data that is not required data.

a) Selected columns and all rows:

Syntax:

select <col1>,<col2> from <tablename>;

b) selected rows and all columns:

Syntax:
select * from <tablename> where <condition>;

c) selected columns and selected rows

Syntax:
select <col1>,<col2> from <tablename> where<condition>;

14. Sorting data in a table.

Syntax:

Select * from <tablename> order by <col1>,<col2> <[sortorder]>;

DCL commands:

Oracle provides extensive feature in order to safeguard information stored in its

tables from unauthoraised viewing and damage.The rights that allow the user of

some or all oracle resources on the server are called privileges.

a) Grant privileges using the GRANT statement

The grant statement provides various types of access to database objects such as

tables,views and sequences and so on.

Syntax:

GRANT <object privileges>

ON <objectname>

TO<username>

[WITH GRANT OPTION];

b) Reoke permissions using the REVOKE statement:

 Self-Instructional Material

 13

Introduction

Notes

The REVOKE statement is used to deny the Grant given on an object.

Syntax:

REVOKE<object privilege>

ON

FROM<user name>;

Self-Instructional Material

14

Table manipulation

Notes

BLOCK 1: TABLE MANIPULATION

1. Table Creation

The CREATE TABLE statement is used to create a new table in a database.

Query Syntax:

CREATE TABLE table_name (

 column1 datatype,

 column2 datatype,

 column3 datatype,

 );

The column parameters specify the names of the columns of the table.

The datatype parameter specifies the type of data the column can hold (e.g.

varchar2, number, date, etc.).

Query Example:

To create a Table to store the details of a Persons such as, Id, Name, Address,

City, Mobile Number

CREATE TABLE Persons (

 PersonID number(4),

 Name varchar2(25),

 Address varchar2(75),

 City varchar2(50),

 Mobile number(10));

SQL> create table persons (personID number(4), Name varchar2(25), address

varchar2(75), city varchar2(50), mobile number(10));

SQL> table created.

Inserting rows in Table

Query Syntax (insert one rows):

INSERT INTO table_name VALUES (value_list);

Try your Own:

 Create a table with student details

 Create a table with customer details

 Create a table with employee details

 Create a table with product details

 Self-Instructional Material

 15

Table manipulation

Notes

 Query Example:

SQL> insert into persons values (1001, ‘Rajesh’, ’35 South St’, ‘Karaikudi’,

9876896512);

1 row created.

SQL>

Query Syntax (insert bulk rows):

INSERT INTO table_name VALUES (value_list);

 Query Example:

SQL> insert into persons values (&personID, ‘&name’, ’&address’, ‘&city’,

&mobile);

Enter value for personID : 1002

Enter value for name: Kumar

Enter value for address: 45 Market Road

Enter value for city: Chennai

Enter value for mobile: 8765349210

insert into persons values (&personID, ‘&name’, ’&address’, ‘&city’, &mobile);

insert into persons values (1002, ‘Kumar’, ’ 45 Market Road’, ‘Chennai’,

8765349210);

1 row created.

SQL>

Note: To add further rows simply use ‘/’ in the SQL prompt. Actually, this ‘/’

command will again execute the previously entered command.

PersonID Name Address City Mobile

1001 Rajesh 35 South St Karaikudi 9876896512

1002 Kumar 45 Market Road Chennai 8765349210

1243 John 371 Thomas Mt. Chennai 7893451260

1378 Rani 875 Mount Rd. Chennai 9654712341

1567 Sundari 67 Main Road Rajapalayam 6387348987

2. Rename a Table

RENAME TABLE allows you to rename an existing table in any schema (except

the schema SYS). To rename a table, you must either be the database owner or the

table owner.

Self-Instructional Material

16

Table manipulation

Notes

Query Syntax:

RENAME TABLE table-Name TO new-Table-Name;

 Query Example:

SQL> rename table persons_chennai to persons_city;

3. Creating Table using existing Table / Copying another table:

Query Syntax:

CREATE TABLE table_name as select attribute_list from table_name

[constraint]);

 Query Example:

SQL> create table persons_chennai as select * from persons1 where

city=’Chennai’;

SQL> table created.

4. Dropping a Table:

Query Syntax:

DROP TABLE table_name;

 Query Example:

SQL> drop table persons1;

Note:

 The DROP TABLE statement is used to drop an existing table in a

database.

 The TRUNCATE TABLE statement is used to delete the data inside a table,

but not the table itself.

o Syntax: TRUNCATE TABLE table_name;

Keys and Constraints

 Primary Key is a column (or attribute) in a table (or a relation) that

uniquely identifies every row (or tuple) through the table. And you can

define only one PK on a table.

 Self-Instructional Material

 17

Table manipulation

Notes

 Unique Key is similar to a Primary Key, but it allows a NULL value. And

you can have multiple Unique Keys on a table.

 NOT NULL constraint restricts a column from having a NULL value.

Once NOT NULL constraint is applied to a column, you cannot pass a null

value to that column. It enforces a column to contain a proper value.

Table creation with keys:

Query Syntax:

CREATE TABLE table_name (

 column1 datatype constrint,);

Query Example:

To create a Table to store the details of a Persons1 such as, Id, Name, Address,

City, Mobile Number with appropriate constraints

CREATE TABLE Persons1 (

 PersonID number(4) primary key,

 Name varchar2(25) not null,

 Address varchar2(75),

 City varchar2(50),

 Mobile number(10) unique);

From the above syntax, the PersonID is declared as ‘Primary Key’, Name is

enforced with ‘Not Null’ and Mobile with ‘Unique’ constraints.

SQL> create table persons (personID number(4) primary key, Name varchar2(25)

not null, address varchar2(75), city varchar2(50), mobile number(10) unique);

SQL> table created.

5. Describing Table Definitions

To view the structure of the created table.

SQL> desc persons;

Output:

Name Null? Type

-------------------------------------- -------- ----------------

PERSONID NUMBER(4)

NAME VARCHAR2(25)

ADDRESS VARCHAR2(75)

 CITY VARCHAR2(50)

Self-Instructional Material

18

Table manipulation

Notes

 MOBILE NUMBER(10)

6. Modifying Tables

ALTER TABLE Statement

This Oracle tutorial explains how to use the Oracle ALTER TABLE statement to

add a column, modify a column, drop a column, rename a column or rename a table

(with syntax, examples and practice exercises).

Description

The Oracle ALTER TABLE statement is used to add, modify, or drop/delete

columns in a table. The Oracle ALTER TABLE statement is also used to rename a

table.

Add column in table

Syntax

To ADD A COLUMN in a table, the Oracle ALTER TABLE syntax is:

ALTER TABLE table_name

 ADD column_name column_definition;

Example

Let's look at an example that shows how to add a column in an Oracle table using

the ALTER TABLE statement.

For example:

ALTER TABLE customers

 ADD customer_name varchar2(45);

This Oracle ALTER TABLE example will add a column called customer_name to

the customers table that is a data type of varchar2(45).

In a more complicated example, you could use the ALTER TABLE statement to

add a new column that also has a default value:

ALTER TABLE customers

 ADD city varchar2(40) DEFAULT 'Karaikudi';

In this example, the column called city has been added to the customers table with a

data type of varchar2(40) and a default value of 'Karaikudi'.

 Self-Instructional Material

 19

Table manipulation

Notes

Add multiple columns in table

Syntax

To ADD MULTIPLE COLUMNS to an existing table, the Oracle ALTER TABLE

syntax is:

ALTER TABLE table_name

 ADD (column_1 column_definition,

 column_2 column_definition,

 ...

 column_n column_definition);

Example

Let's look at an example that shows how to add multiple columns in an Oracle table

using the ALTER TABLE statement.

For example:

ALTER TABLE customers

 ADD (customer_name varchar2(45),

 city varchar2(40) DEFAULT 'Karaikudi');

This Oracle ALTER TABLE example will add two columns, customer_name as a

varchar2(45) field and city as a varchar2(40) field with a default value of 'Karaikudi'

to the customers table.

Modify column in table

Syntax

To MODIFY A COLUMN in an existing table, the Oracle ALTER TABLE syntax

is:

ALTER TABLE table_name

 MODIFY column_name column_type;

Example

Let's look at an example that shows how to modify a column in an Oracle table

using the ALTER TABLE statement.

For example:

ALTER TABLE customers

 MODIFY customer_name varchar2(100) NOT NULL;

This Oracle ALTER TABLE example will modify the column

called customer_name to be a data type of varchar2(100) and force the column to

not allow null values.

Self-Instructional Material

20

Table manipulation

Notes

In a more complicated example, you could use the ALTER TABLE statement to

add a default value as well as modify the column definition:

ALTER TABLE customers

 MODIFY city varchar2(75) DEFAULT 'Karaikudi' NOT NULL;

In this example, the ALTER TABLE statement would modify the column

called city to be a data type of varchar2(75), the default value would be set to

'Karaikudi' and the column would be set to not allow null values.

Modify Multiple columns in table

Syntax

To MODIFY MULTIPLE COLUMNS in an existing table, the Oracle ALTER

TABLE syntax is:

ALTER TABLE table_name

 MODIFY (column_1 column_type,

 column_2 column_type, ...

 column_n column_type);

Example

Let's look at an example that shows how to modify multiple columns in an Oracle

table using the ALTER TABLE statement.

For example:

ALTER TABLE customers

 MODIFY (customer_name varchar2(100) NOT NULL,

 city varchar2(75) DEFAULT 'Karaikudi' NOT NULL);

This Oracle ALTER TABLE example will modify both

the customer_name and city columns. The customer_name column will be set to a

varchar2(100) data type and not allow null values. The city column will be set to a

varchar2(75) data type, its default value will be set to 'Karaikudi', and the column

will not allow null values.

Drop column in table

Syntax

To DROP A COLUMN in an existing table, the Oracle ALTER TABLE syntax is:

ALTER TABLE table_name

 DROP COLUMN column_name;

Example

Let's look at an example that shows how to drop a column in an Oracle table using

the ALTER TABLE statement.

For example:

ALTER TABLE customers

 Self-Instructional Material

 21

Table manipulation

Notes

 DROP COLUMN customer_name;

This Oracle ALTER TABLE example will drop the column

called customer_name from the table called customers.

Rename column in table

Syntax

Starting in Oracle 9i Release 2, you can now rename a column.

To RENAME A COLUMN in an existing table, the Oracle ALTER TABLE syntax

is:

ALTER TABLE table_name

 RENAME COLUMN old_name TO new_name;

Example

Let's look at an example that shows how to rename a column in an Oracle table

using the ALTER TABLE statement.

For example:

ALTER TABLE customers

 RENAME COLUMN customer_name TO cname;

This Oracle ALTER TABLE example will rename the column

called customer_name to cname.

Rename table

Syntax

To RENAME A TABLE, the Oracle ALTER TABLE syntax is:

ALTER TABLE table_name

 RENAME TO new_table_name;

Example

Let's look at an example that shows how to rename a table in Oracle using the

ALTER TABLE statement.

For example:

ALTER TABLE customers

 RENAME TO contacts;

This Oracle ALTER TABLE example will rename the customers table to contacts.

Self-Instructional Material

22

Table manipulation

Notes

Practice Exercise #1:

Based on the departments table below, rename the departments table to depts.

CREATE TABLE departments

(department_id number(10) NOT NULL,

 department_name varchar2(50) NOT NULL,

 CONSTRAINT departments_pk PRIMARY KEY (department_id)

);

Solution for Practice Exercise #1:

The following Oracle ALTER TABLE statement would rename

the departments table to depts:

ALTER TABLE departments

 RENAME TO depts;

Practice Exercise #2:

Based on the employees table below, add a column called bonus that is a number(6)

datatype.

CREATE TABLE employees

(employee_number number(10) NOT NULL,

 employee_name varchar2(50) NOT NULL,

 department_id number(10),

 CONSTRAINT employees_pk PRIMARY KEY (employee_number));

Solution for Practice Exercise #2:

The following Oracle ALTER TABLE statement would add a bonus column to

the employees table:

ALTER TABLE employees

 ADD bonus number(6);

Practice Exercise #3:

Based on the customers table below, add two columns - one column

called contact_name that is a varchar2(50) datatype and one column

called last_contacted that is a date datatype.

CREATE TABLE customers

(customer_id number(10) NOT NULL,

 customer_name varchar2(50) NOT NULL,

 address varchar2(50),

 city varchar2(50),

 state varchar2(25),

 zip_code varchar2(10),

 CONSTRAINT customers_pk PRIMARY KEY (customer_id)

);

 Self-Instructional Material

 23

Table manipulation

Notes

Solution for Practice Exercise #3:

The following Oracle ALTER TABLE statement would add

the contact_name and last_contacted columns to the customers table:

ALTER TABLE customers

 ADD (contact_name varchar2(50),

 last_contacted date);

Practice Exercise #4:

Based on the employees table below, change the employee_name column to a

varchar2(75) datatype.

CREATE TABLE employees

(employee_number number(10) NOT NULL,

 employee_name varchar2(50) NOT NULL,

 department_id number(10),

 CONSTRAINT employees_pk PRIMARY KEY (employee_number));

Solution for Practice Exercise #4:

The following Oracle ALTER TABLE statement would change the datatype for

the employee_name column to varchar2(75):

ALTER TABLE employees

 MODIFY employee_name varchar2(75);

Practice Exercise #5:

Based on the customers table below, change the customer_name column to NOT

allow null values and change the state column to a varchar2(2) datatype.

CREATE TABLE customers

(customer_id number(10) NOT NULL,

 customer_name varchar2(50),

 address varchar2(50),

 city varchar2(50),

 state varchar2(25),

 zip_code varchar2(10),

 CONSTRAINT customers_pk PRIMARY KEY (customer_id)

);

Solution for Practice Exercise #5:

The following Oracle ALTER TABLE statement would modify

the customer_name and state columns accordingly in the customers table:

ALTER TABLE customers

 MODIFY (customer_name varchar2(50) NOT NULL,

 state varchar2(2));

Self-Instructional Material

24

Table manipulation

Notes

Practice Exercise #6:

Based on the employees table below, drop the salary column.

CREATE TABLE employees

(employee_number number(10) NOT NULL,

 employee_name varchar2(50) NOT NULL,

 department_id number(10),

 salary number(6),

 CONSTRAINT employees_pk PRIMARY KEY (employee_number)

);

Solution for Practice Exercise #6:

The following Oracle ALTER TABLE statement would drop the salary column

from the employees table:

ALTER TABLE employees

 DROP COLUMN salary;

Practice Exercise #7:

Based on the departments table below, rename the department_name column

to dept_name.

CREATE TABLE departments

(department_id number(10) NOT NULL,

 department_name varchar2(50) NOT NULL,

 CONSTRAINT departments_pk PRIMARY KEY (department_id)

);

Solution for Practice Exercise #7:

The following Oracle ALTER TABLE statement would rename

the department_name column to dept_name in the departments table:

ALTER TABLE departments

 RENAME COLUMN department_name TO dept_name;

7. Joining Tables

This Oracle tutorial explains how to use JOINS (inner and outer) in Oracle with

syntax, visual illustrations, and examples.

Description

Oracle JOINS are used to retrieve data from multiple tables. An Oracle JOIN is

performed whenever two or more tables are joined in a SQL statement.

There are 4 different types of Oracle joins:

 Oracle INNER JOIN (or sometimes called simple join)

 Oracle LEFT OUTER JOIN (or sometimes called LEFT JOIN)

 Oracle RIGHT OUTER JOIN (or sometimes called RIGHT JOIN)

 Oracle FULL OUTER JOIN (or sometimes called FULL JOIN)

 Self-Instructional Material

 25

Table manipulation

Notes

So let's discuss Oracle JOIN syntax, look at visual illustrations of Oracle JOINS,

and explore Oracle JOIN examples.

INNER JOIN (simple join)

Chances are, you've already written a statement that uses an Oracle INNER JOIN.

It is the most common type of join. Oracle INNER JOINS return all rows from

multiple tables where the join condition is met.

Syntax

The syntax for the INNER JOIN in Oracle/PLSQL is:

SELECT columns

FROM table1

INNER JOIN table2 ON table1.column = table2.column;

Visual Illustration

In this visual diagram, the Oracle INNER JOIN returns the shaded area:

The Oracle INNER JOIN would return the records

where table1 and table2 intersect.

Example

Here is an example of an Oracle INNER JOIN:

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date

FROM suppliers

INNER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

This Oracle INNER JOIN example would return all rows from the suppliers and

orders tables where there is a matching supplier_id value in both the suppliers and

orders tables.

Let's look at some data to explain how the INNER JOINS work:

We have a table called suppliers with two fields (supplier_id and supplier_name).

It contains the following data:

supplier_id supplier_name

10000 IBM

10001 Hewlett Packard

Self-Instructional Material

26

Table manipulation

Notes

supplier_id supplier_name

10002 Microsoft

10003 NVIDIA

We have another table called orders with three fields (order_id, supplier_id, and

order_date). It contains the following data:

order_id supplier_id order_date

500125 10000 2003/05/12

500126 10001 2003/05/13

500127 10004 2003/05/14

If we run the Oracle SELECT statement (that contains an INNER JOIN) below:

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date

FROM suppliers

INNER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

Our result set would look like this:

supplier_id name order_date

10000 IBM 2003/05/12

10001 Hewlett Packard 2003/05/13

The rows for Microsoft and NVIDIA from the supplier table would be omitted,

since the supplier_id's 10002 and 10003 do not exist in both tables. The row for

500127 (order_id) from the orders table would be omitted, since the supplier_id

10004 does not exist in the suppliers table.

LEFT OUTER JOIN

Another type of join is called an Oracle LEFT OUTER JOIN. This type of join

returns all rows from the LEFT-hand table specified in the ON condition

and only those rows from the other table where the joined fields are equal (join

condition is met).

Syntax

The syntax for the Oracle LEFT OUTER JOIN is:

SELECT columns

FROM table1 LEFT [OUTER] JOIN table2

ON table1.column = table2.column;

 Self-Instructional Material

 27

Table manipulation

Notes

In some databases, the LEFT OUTER JOIN keywords are replaced with LEFT

JOIN.

Visual Illustration

In this visual diagram, the Oracle LEFT OUTER JOIN returns the shaded area:

The Oracle LEFT OUTER JOIN would return the all records from table1 and only

those records from table2 that intersect with table1.

Example

Here is an example of an Oracle LEFT OUTER JOIN:

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date

FROM suppliers

LEFT OUTER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

This LEFT OUTER JOIN example would return all rows from the suppliers table

and only those rows from the orders table where the joined fields are equal.

If a supplier_id value in the suppliers table does not exist in the orders table, all

fields in the orders table will display as <null> in the result set.

Let's look at some data to explain how LEFT OUTER JOINS work:

We have a table called suppliers with two fields (supplier_id and supplier_name).

It contains the following data:

supplier_id supplier_name

10000 IBM

10001 Hewlett Packard

10002 Microsoft

10003 NVIDIA

We have a second table called orders with three fields (order_id, supplier_id, and

order_date). It contains the following data:

order_id supplier_id order_date

500125 10000 2003/05/12

Self-Instructional Material

28

Table manipulation

Notes

order_id supplier_id order_date

500126 10001 2003/05/13

If we run the SELECT statement (that contains a LEFT OUTER JOIN) below:

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date

FROM suppliers

LEFT OUTER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

Our result set would look like this:

supplier_id supplier_name order_date

10000 IBM 2003/05/12

10001 Hewlett Packard 2003/05/13

10002 Microsoft <null>

10003 NVIDIA <null>

The rows for Microsoft and NVIDIA would be included because a LEFT OUTER

JOIN was used. However, you will notice that the order_date field for those

records contains a <null> value.

RIGHT OUTER JOIN

Another type of join is called an Oracle RIGHT OUTER JOIN. This type of join

returns all rows from the RIGHT-hand table specified in the ON condition

and only those rows from the other table where the joined fields are equal (join

condition is met).

Syntax

The syntax for the Oracle RIGHT OUTER JOIN is:

SELECT columns

FROM table1

RIGHT [OUTER] JOIN table2

ON table1.column = table2.column;

In some databases, the RIGHT OUTER JOIN keywords are replaced with RIGHT

JOIN.

Visual Illustration

In this visual diagram, the Oracle RIGHT OUTER JOIN returns the shaded area:

 Self-Instructional Material

 29

Table manipulation

Notes

The Oracle RIGHT OUTER JOIN would return the all records from table2 and

only those records from table1 that intersect with table2.

Example

Here is an example of an Oracle RIGHT OUTER JOIN:

SELECT orders.order_id, orders.order_date, suppliers.supplier_name

FROM suppliers

RIGHT OUTER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

This RIGHT OUTER JOIN example would return all rows from the orders table

and only those rows from the suppliers table where the joined fields are equal.

If a supplier_id value in the orders table does not exist in the suppliers table, all

fields in the suppliers table will display as <null> in the result set.

Let's look at some data to explain how RIGHT OUTER JOINS work:

We have a table called suppliers with two fields (supplier_id and supplier_name).

It contains the following data:

supplier_id supplier_name

10000 Apple

10001 Google

We have a second table called orders with three fields (order_id, supplier_id, and

order_date). It contains the following data:

order_id supplier_id order_date

500125 10000 2013/08/12

500126 10001 2013/08/13

500127 10002 2013/08/14

If we run the SELECT statement (that contains a RIGHT OUTER JOIN) below:

Self-Instructional Material

30

Table manipulation

Notes

SELECT orders.order_id, orders.order_date, suppliers.supplier_name

FROM suppliers

RIGHT OUTER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

Our result set would look like this:

order_id order_date supplier_name

500125 2013/08/12 Apple

500126 2013/08/13 Google

500127 2013/08/14 <null>

The row for 500127 (order_id) would be included because a RIGHT OUTER JOIN

was used. However, you will notice that the supplier_name field for that record

contains a <null> value.

FULL OUTER JOIN

Another type of join is called an Oracle FULL OUTER JOIN. This type of join

returns all rows from the LEFT-hand table and RIGHT-hand table with nulls in

place where the join condition is not met.

Syntax

The syntax for the Oracle FULL OUTER JOIN is:

SELECT columns

FROM table1

FULL [OUTER] JOIN table2

ON table1.column = table2.column;

In some databases, the FULL OUTER JOIN keywords are replaced with FULL

JOIN.

Visual Illustration

In this visual diagram, the Oracle FULL OUTER JOIN returns the shaded area:

The Oracle FULL OUTER JOIN would return the all records from

both table1 and table2.

 Self-Instructional Material

 31

Table manipulation

Notes

Example

Here is an example of an Oracle FULL OUTER JOIN:

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date

FROM suppliers FULL OUTER JOIN orders ON suppliers.supplier_id =

orders.supplier_id;

This FULL OUTER JOIN example would return all rows from the suppliers table

and all rows from the orders table and whenever the join condition is not met,

<nulls> would be extended to those fields in the result set.

If a supplier_id value in the suppliers table does not exist in the orders table, all

fields in the orders table will display as <null> in the result set. If a supplier_id

value in the orders table does not exist in the suppliers table, all fields in the

suppliers table will display as <null> in the result set.

Let's look at some data to explain how FULL OUTER JOINS work:

We have a table called suppliers with two fields (supplier_id and supplier_name).

It contains the following data:

supplier_id supplier_name

10000 IBM

10001 Hewlett Packard

10002 Microsoft

10003 NVIDIA

We have a second table called orders with three fields (order_id, supplier_id, and

order_date). It contains the following data:

order_id supplier_id order_date

500125 10000 2013/08/12

500126 10001 2013/08/13

500127 10004 2013/08/14

If we run the SELECT statement (that contains a FULL OUTER JOIN) below:

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date

FROM suppliers

FULL OUTER JOIN orders ON suppliers.supplier_id = orders.supplier_id;

Our result set would look like this:

supplier_id supplier_name order_date

10000 IBM 2013/08/12

10001 Hewlett Packard 2013/08/13

Self-Instructional Material

32

Table manipulation

Notes

supplier_id supplier_name order_date

10002 Microsoft <null>

10003 NVIDIA <null>

<null> <null> 2013/08/14

The rows for Microsoft and NVIDIA would be included because a FULL OUTER

JOIN was used. However, you will notice that the order_date field for those

records contains a <null> value.

The row for supplier_id 10004 would be also included because a FULL OUTER

JOIN was used. However, you will notice that the supplier_id and supplier_name

field for those records contain a <null> value.

8. Number and Date Functions

Numeric Functions are used to perform operations on numbers and return

numbers.

Following are the numeric functions defined in SQL:

1. ABS(): It returns the absolute value of a number.

Syntax: SELECT ABS(-243.5);

Output: 243.5

2. ACOS(): It returns the cosine of a number.

Syntax: SELECT ACOS(0.25);

Output: 1.318116071652818

3. ASIN(): It returns the arc sine of a number.

Syntax: SELECT ASIN(0.25);

Output: 0.25268025514207865

4. ATAN(): It returns the arc tangent of a number.

Syntax: SELECT ATAN(2.5);

Output: 1.1902899496825317

5. CEIL(): It returns the smallest integer value that is greater than or equal to a

number.

Syntax: SELECT CEIL(25.75);

Output: 26

6. CEILING(): It returns the smallest integer value that is greater than or equal

to a number.

Syntax: SELECT CEILING(25.75);

Output: 26

7. COS(): It returns the cosine of a number.

Syntax: SELECT COS(30);

Output: 0.15425144988758405

8. COT(): It returns the cotangent of a number.

Syntax: SELECT COT(6);

Output: -3.436353004180128

 Self-Instructional Material

 33

Table manipulation

Notes

9. DEGREES(): It converts a radian value into degrees.

Syntax: SELECT DEGREES(1.5);

Output: 85.94366926962348

10. DIV(): It is used for integer division.

Syntax: SELECT 10 DIV 5;

Output: 2

11. EXP(): It returns e raised to the power of number.

Syntax: SELECT EXP(1);

Output: 2.718281828459045

12. FLOOR(): It returns the largest integer value that is less than or equal to a

number.

Syntax: SELECT FLOOR(25.75);

Output: 25

13. GREATEST(): It returns the greatest value in a list of expressions.

Syntax: SELECT GREATEST(30, 2, 36, 81, 125);

Output: 125

14. LEAST(): It returns the smallest value in a list of expressions.

Syntax: SELECT LEAST(30, 2, 36, 81, 125);

Output: 2

15. LN(): It returns the natural logarithm of a number.

Syntax: SELECT LN(2);

Output: 0.6931471805599453

16. LOG10(): It returns the base-10 logarithm of a number.

Syntax: SELECT LOG(2);

Output: 0.6931471805599453

17. LOG2(): It returns the base-2 logarithm of a number.

Syntax: SELECT LOG2(6);

Output: 2.584962500721156

18. MOD(): It returns the remainder of n divided by m.

Syntax: SELECT MOD(18, 4);

Output: 2

19. PI(): It returns the value of PI displayed with 6 decimal places.

Syntax: SELECT PI();

Output: 3.141593

20. POW(): It returns m raised to the nth power.

Syntax: SELECT POW(4, 2);

Output: 16

21. RADIANS(): It converts a value in degrees to radians.

Syntax: SELECT RADIANS(180);

Output: 3.141592653589793

22. RAND(): It returns a random number.

Self-Instructional Material

34

Table manipulation

Notes

Syntax: SELECT RAND();

Output: 0.33623238684258644

23. ROUND(): It returns a number rounded to a certain number of decimal places.

Syntax: SELECT ROUND(5.553);

Output: 6

24. SIGN(): It returns a value indicating the sign of a number.

Syntax: SELECT SIGN(255.5);

Output: 1

25. SIN(): It returns the sine of a number.

Syntax: SELECT SIN(2);

Output: 0.9092974268256817

26. SQRT(): It returns the square root of a number.

Syntax: SELECT SQRT(25);

Output: 5

27. TAN(): It returns the tangent of a number.

Syntax: SELECT TAN(1.75);

Output: -5.52037992250933

28. ATAN2(): It returns the arctangent of the x and y coordinates, as an angle and

expressed in radians.

Syntax: SELECT ATAN2(7);

Output: 1.42889927219073

29. TRUNCATE(): It returns 7.53635 truncated to 2 places right of the decimal

point.

Syntax: SELECT TRUNCATE(7.53635, 2);

Output: 7.53

Date Functions

Function Example Result Description

ADD_MONTHS ADD_MONTHS(

DATE '2016-02-29', 1)

 31-MAR-16 Add a number of

months (n) to a

date and return the

same day which is

n of months away.

CURRENT_DATE SELECT

CURRENT_DATE

FROM dual

 06-AUG-

2017 19:43:44

Return the current

date and time in

the session time

zone

CURRENT_TIMEST

AMP
SELECT

CURRENT_TIMESTA

MP FROM dual

06-AUG-17

08.26.52.7420

00000 PM -

07:00

Return the current

date and time with

time zone in the

session time zone

DBTIMEZONE SELECT

DBTIMEZONE FROM

dual;

 -07:00 Get the current

database time zone

EXTRACT EXTRACT(YEAR

FROM SYSDATE)

 2017 Extract a value of

a date time field

e.g., YEAR,

 Self-Instructional Material

 35

Table manipulation

Notes

Function Example Result Description

MONTH, DAY,

… from a date

time value.

FROM_TZ FROM_TZ(TIMESTA

MP '2017-08-08

08:09:10', '-09:00')

 08-AUG-17

08.09.10.0000

00000 AM -

07:00

Convert a

timestamp and a

time zone to

a TIMESTAMP

WITH TIME

ZONE value

LAST_DAY LAST_DAY(DATE

'2016-02-01')

 29-FEB-16 Gets the last day

of the month of a

specified date.

LOCALTIMESTAMP SELECT

LOCALTIMESTAMP

FROM dual

 06-AUG-17

08.26.52.7420

00000 PM

Return

a TIMESTAMP v

alue that

represents the

current date and

time in the session

time zone.

MONTHS_BETWEE

N
MONTHS_BETWEEN(

DATE '2017-07-01',

DATE '2017-01-01')

6 Return the number

of months between

two dates.

NEW_TIME NEW_TIME(

TO_DATE('08-07-2017

01:30:45', 'MM-DD-

YYYY HH24:MI:SS'),

'AST', 'PST')

 06-AUG-2017

21:30:45

Convert a date in

one time zone to

another

NEXT_DAY NEXT_DAY(DATE

'2000-01-01', 'SUNDAY'

)

 02-JAN-00 Get the first

weekday that is

later than a

specified date.

ROUND ROUND(DATE '2017-

07-16', 'MM')

 01-AUG-17 Return a date

rounded to a

specific unit of

measure.

SESSIONTIMEZONE SELECT

SESSIONTIMEZONE

FROM dual;

 -07:00 Get the session

time zone

SYSDATE SYSDATE 01-AUG-17 Return the current

system date and

time of the

operating system

where the Oracle

Database resides.

SYSTIMESTAMP SELECT

SYSTIMESTAMP

FROM dual;

01-AUG-17

01.33.57.9290

00000 PM -

07:00

Return the system

date and time that

includes fractional

seconds and time

zone.

Self-Instructional Material

36

Table manipulation

Notes

Function Example Result Description

TO_CHAR TO_CHAR(

DATE'2017-01-01', 'DL'

)

 Sunday,

January 01,

2017

Convert

a DATE or

an INTERVAL va

lue to a character

string in a

specified format.

TO_DATE TO_DATE('01 Jan

2017', 'DD MON

YYYY')

 01-JAN-17 Convert a date

which is in the

character string to

a DATE value.

TRUNC TRUNC(DATE '2017-

07-16', 'MM')

 01-JUL-17 Return a date

truncated to a

specific unit of

measure.

TZ_OFFSET TZ_OFFSET(

'Europe/London')

 +01:00 Get time zone

offset of a time

zone name from

UTC

https://www.oracletutorial.com/oracle-basics/oracle-date/
https://www.oracletutorial.com/oracle-basics/oracle-interval/

 Self-Instructional Material

 37

Sql queries and sub queries

Notes

BLOCK 2 : SQL QUERIES AND SUB

QUERIES

A query is an operation that retrieves data from one or more tables or views. In this

reference, a top-level SELECT statement is called a query, and a query nested

within another SQL statement is called a subquery.

This section describes some types of queries and subqueries and how to use them.

The top level of the syntax is shown in this chapter. Please refer to SELECT for the

full syntax of all the clauses and the semantics of this statement.

select::=

subquery::=

In Oracle, a subquery is a query within a query. You can create subqueries within

your SQL statements. These subqueries can reside in the WHERE clause, the

FROM clause, or the SELECT clause.

A subquery is best defined as a query within a query. Subqueries enable you to

write queries that select data rows for criteria that are actually developed while the

query is executing at run time. More formally, it is the use of a SELECT statement

inside one of the clauses of another SELECT statement.

https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_10002.htm#i2065646

Self-Instructional Material

38

Sql queries and sub queries

Notes

In fact, a subquery can be contained inside another subquery, which is inside

another subquery, and so forth. A subquery can also be nested inside INSERT,

UPDATE, and DELETE statements. Subqueries must be enclosed within

parentheses.

A subquery can be used any place where an expression is allowed providing it

returns a single value. This means that a subquery that returns a single value can

also be listed as an object in a FROM clause listing. This is termed an inline view

because when a subquery is used as part of a FROM clause, it is treated like a

virtual table or view. Subquery can be placed either in FROM clause, WHERE

clause or HAVING clause of the main query.

Oracle allows a maximum nesting of 255 subquery levels in a WHERE clause.

There is no limit for nesting subqueries expressed in a FROM clause.In practice, the

limit of 255 levels is not really a limit at all because it is rare to encounter

subqueries nested beyond three or four levels.

A subquery SELECT statement is very similar to the SELECT statement used to

begin a regular or outer query.The complete syntax of a subquery is:

(SELECT [DISTINCT] subquery_select_parameter

 FROM {table_name | view_name}

 {table_name | view_name} ...

 [WHERE search_conditions]

 [GROUP BY column_name [,column_name] ...]

 [HAVING search_conditions])

WHERE clause

Most often, the subquery will be found in the WHERE clause. These subqueries are

also called nested subqueries.

For example:

SELECT *

FROM all_tables tabs

WHERE tabs.table_name IN (SELECT cols.table_name

 FROM all_tab_columns cols

 WHERE cols.column_name = 'SUPPLIER_ID');

Limitation: Oracle allows up to 255 levels of subqueries in the WHERE clause.

FROM clause

A subquery can also be found in the FROM clause. These are called inline views.

For example:

SELECT suppliers.name, subquery1.total_amt

FROM suppliers,

 (SELECT supplier_id, SUM(orders.amount) AS total_amt

 FROM orders

 GROUP BY supplier_id) subquery1

 Self-Instructional Material

 39

Sql queries and sub queries

Notes

WHERE subquery1.supplier_id = suppliers.supplier_id;

In this example, we've created a subquery in the FROM clause as follows:

(SELECT supplier_id, SUM(orders.amount) AS total_amt

 FROM orders

 GROUP BY supplier_id) subquery1

This subquery has been aliased with the name subquery1. This will be the name

used to reference this subquery or any of its fields.

SELECT clause

A subquery can also be found in the SELECT clause.

For example:

SELECT tbls.owner, tbls.table_name,

 (SELECT COUNT(column_name) AS total_columns

 FROM all_tab_columns cols

 WHERE cols.owner = tbls.owner

 AND cols.table_name = tbls.table_name) subquery2

FROM all_tables tbls;

In this example, we've created a subquery in the SELECT clause as follows:

(SELECT COUNT(column_name) AS total_columns

 FROM all_tab_columns cols

 WHERE cols.owner = tbls.owner

 AND cols.table_name = tbls.table_name) subquery2

The subquery has been aliased with the name subquery2. This will be the name used

to reference this subquery or any of its fields.

The trick to placing a subquery in the select clause is that the subquery must return a

single value. This is why an aggregate function such as SUM function, COUNT

function, MIN function, or MAX function is commonly used in the subquery.

Types of Subqueries

 Single Row Sub Query: Sub query which returns single row output. They

mark the usage of single row comparison operators, when used in WHERE

conditions.

 Multiple row sub query: Sub query returning multiple row output. They

make use of multiple row comparison operators like IN, ANY, ALL. There

can be sub queries returning multiple columns also.

 Correlated Sub Query: Correlated subqueries depend on data provided by

the outer query. This type of subquery also includes subqueries that use the

EXISTS operator to test the existence of data rows satisfying specified

criteria.

Single Row Sub Query

A single-row subquery is used when the outer query's results are based on a single,

unknown value. Although this query type is formally called "single-row," the name

implies that the query returns multiple columns-but only one row of results.

https://www.techonthenet.com/oracle/functions/sum.php
https://www.techonthenet.com/oracle/functions/count.php
https://www.techonthenet.com/oracle/functions/count.php
https://www.techonthenet.com/oracle/functions/min.php
https://www.techonthenet.com/oracle/functions/max.php

Self-Instructional Material

40

Sql queries and sub queries

Notes

However, a single-row subquery can return only one row of results consisting of

only one column to the outer query.

In the below SELECT query, inner SQL returns only one row i.e. the minimum

salary for the company. It in turn uses this value to compare salary of all the

employees and displays only those, whose salary is equal to minimum salary.

SELECT first_name, salary, department_id

FROM employees

WHERE salary = (SELECT MIN (salary)

 FROM employees);

A HAVING clause is used when the group results of a query need to be restricted

based on some condition. If a subquery's result must be compared with a group

function, you must nest the inner query in the outer query's HAVING clause.

SELECT department_id, MIN (salary)

FROM employees

GROUP BY department_id

HAVING MIN (salary) < (SELECT AVG (salary)

 FROM employees)

Multiple Row Sub Query

Multiple-row subqueries are nested queries that can return more than one row of

results to the parent query. Multiple-row subqueries are used most commonly in

WHERE and HAVING clauses. Since it returns multiple rows,it must be handled by

set comparison operators (IN, ALL, ANY).While IN operator holds the same

meaning as discussed in earlier chapter, ANY operator compares a specified value

to each value returned by the sub query while ALL compares a value to every value

returned by a sub query.

Below query shows the error when single row sub query returns multiple rows.

SELECT first_name, department_id

FROM employees

WHERE department_id = (SELECT department_id

 FROM employees

 WHERE LOCATION_ID = 100)
department_id = (select

 *

ERROR at line 4:

ORA-01427: single-row subquery returns more than one row

Usage of Multiple Row operators

 [> ALL] More than the highest value returned by the subquery

 [< ALL] Less than the lowest value returned by the subquery

 [< ANY] Less than the highest value returned by the subquery

 [> ANY] More than the lowest value returned by the subquery

 [= ANY] Equal to any value returned by the subquery (same as IN)

Above SQL can be rewritten using IN operator like below.

SELECT first_name, department_id

FROM employees

WHERE department_id IN (SELECT department_id

 FROM departments

 Self-Instructional Material

 41

Sql queries and sub queries

Notes

 WHERE LOCATION_ID = 100)

Note in the above query, IN matches department ids returned from the sub query,

compares it with that in the main query and returns employee's name who satisfy

the condition.

A join would be better solution for above query, but for purpose of illustration, sub

query has been used in it.

Correlated Sub Query

As opposed to a regular subquery, where the outer query depends on values

provided by the inner query,a correlated subquery is one where the inner query

depends on values provided by the outer query. This means that in a correlated

subquery,the inner query is executed repeatedly, once for each row that might be

selected by the outer query.

Correlated subqueries can produce result tables that answer complex management

questions.

Consider the below SELECT query. Unlike the subqueries previously considered,

the subquery in this SELECT statement cannot be resolved independently of the

main query. Notice that the outer query specifies that rows are selected from the

employee table with an alias name of e1. The inner query compares the employee

department number column (DepartmentNumber) of the employee table with alias

e2 to the same column for the alias table name e1.

SELECT EMPLOYEE_ID, salary, department_id

FROM employees E

WHERE salary > (SELECT AVG(salary)

 FROM EMP T

 WHERE E.department_id = T.department_id)

Multiple Column Sub Query

A multiple-column subquery returns more than one column to the outer query and

can be listed in the outer query's FROM, WHERE, or HAVING clause. For

example, the below query shows the employee's historical details for the ones

whose current salary is in range of 1000 and 2000 and working in department 10 or

20.

SELECT first_name, job_id, salary

FROM emp_history

WHERE (salary, department_id) in (SELECT salary, department_id

 FROM employees

 WHERE salary BETWEEN 1000 and 2000

 AND department_id BETWEEN 10 and 20)

ORDER BY first_name;

When a multiple-column subquery is used in the outer query's FROM clause, it

creates a temporary table that can be referenced by other clauses of the outer query.

This temporary table is more formally called an inline view. The subquery's results

are treated like any other table in the FROM clause. If the temporary table contains

grouped data, the grouped subsets are treated as separate rows of data in a table.

Consider the FROM clause in the below query. The inline view formed by the

subquery is the data source for the main query.

Self-Instructional Material

42

Sql queries and sub queries

Notes

SELECT *

FROM (SELECT salary, department_id

 FROM employees

 WHERE salary BETWEEN 1000 and 2000);

10. Aggregate Functions

Aggregate functions return a single value based on groups of rows, rather than

single value for each row. You can use Aggregate functions in select lists and in

ORDER BY and HAVING clauses. They are commonly used with the GROUP BY

clause in a SELECT statement, where Oracle divides the rows of a queried table or

view into groups.

The important Aggregate functions are :

 Avg

 Sum

 Max

 Min

 Count

 Stddev

 Variance

AVG

 AVG(ALL /DISTINCT expr)

Returns the average value of expr.

Example

The following query returns the average salary of all employees.

select avg(sal) “Average Salary” from emp;

Average Salary

2400.40

SUM

 SUM(ALL/DISTINCT expr)

Returns the sum value of expr.

Example

The following query returns the sum salary of all employees.

 Self-Instructional Material

 43

Sql queries and sub queries

Notes

select sum(sal) “Total Salary” from emp;

Total Salary

26500

MAX

 MAX(ALL/DISTINCT expr)

Returns maximum value of expr.

Example

The following query returns the max salary from the employees.

select max(sal) “Max Salary” from emp;

Maximum Salary

4500

MIN

 MIN(ALL/DISTINCT expr)

Returns minimum value of expr.

Example

The following query returns the minimum salary from the employees.

select min(sal) “Min Salary” from emp;

Minimum Salary

1200

COUNT

 COUNT(*) OR COUNT(ALL/DISTINCT expr)

Returns the number of rows in the query. If you specify expr then count ignore

nulls. If you specify the asterisk (*), this function returns all rows, including

duplicates and nulls. COUNT never returns null.

Example

The following query returns the number of employees.

Self-Instructional Material

44

Sql queries and sub queries

Notes

Select count(*) from emp;

COUNT

14

The following query counts the number of employees whose salary is not null.

Select count(sal) from emp;

COUNT

12

STDDEV

 STDDEV(ALL/DISTINCT expr)

STDDEV returns sample standard deviation of expr, a set of numbers.

Example

The following query returns the standard deviation of salaries.

select stddev(sal) from emp;

Stddev

 1430

VARIANCE

 VARIANCE(ALL/DISTINCT expr)

Variance returns the variance of expr.

Example

The following query returns the variance of salaries.

select variance(sal) from emp;

Variance

1430

SQL | DDL, DQL, DML, DCL and TCL Commands

Structured Query Language(SQL) as we all know is the database language by the

use of which we can perform certain operations on the existing database and also we

can use this language to create a database. SQL uses certain commands like Create,

Drop, Insert etc. to carry out the required tasks.

 Self-Instructional Material

 45

Sql queries and sub queries

Notes

These SQL commands are mainly categorized into four categories as:

1. DDL – Data Definition Language

2. DQl – Data Query Language

3. DML – Data Manipulation Language

4. DCL – Data Control Language

Though many resources claim there to be another category of SQL clauses TCL –

Transaction Control Language. So we will see in detail about TCL as well.

1. DDL(Data Definition Language) : DDL or Data Definition Language

actually consists of the SQL commands that can be used to define the

database schema. It simply deals with descriptions of the database schema

and is used to create and modify the structure of database objects in the

database.

Examples of DDL commands:
 CREATE – is used to create the database or its objects (like table,

index, function, views, store procedure and triggers).

 DROP – is used to delete objects from the database.

 ALTER-is used to alter the structure of the database.

 TRUNCATE–is used to remove all records from a table, including

all spaces allocated for the records are removed.

 COMMENT –is used to add comments to the data dictionary.

 RENAME –is used to rename an object existing in the database.

2. DQL (Data Query Language) :

DML statements are used for performing queries on the data within schema objects.

The purpose of DQL Command is to get some schema relation based on the query

passed to it.

Self-Instructional Material

46

Sql queries and sub queries

Notes

Example of DQL:
 SELECT – is used to retrieve data from the a database.

3. DML(Data Manipulation Language) : The SQL commands that deals

with the manipulation of data present in the database belong to DML or

Data Manipulation Language and this includes most of the SQL statements.

Examples of DML:
 INSERT – is used to insert data into a table.

 UPDATE – is used to update existing data within a table.

 DELETE – is used to delete records from a database table.

4. DCL(Data Control Language) : DCL includes commands such as

GRANT and REVOKE which mainly deals with the rights, permissions and

other controls of the database system.

Examples of DCL commands:
 GRANT-gives user’s access privileges to database.

 REVOKE-withdraw user’s access privileges given by using the

GRANT command.

5. TCL(transaction Control Language) : TCL commands deals with

the transaction within the database.

Examples of TCL commands:
 COMMIT– commits a Transaction.

 ROLLBACK– rollbacks a transaction in case of any error occurs.

 SAVEPOINT–sets a savepoint within a transaction.

 SET TRANSACTION–specify characteristics for the transaction.

11. Data Definition Language (DDL) Statements

Data definition language (DDL) statements enable you to perform these tasks:

 Create, alter, and drop schema objects

 Grant and revoke privileges and roles

 Analyze information on a table, index, or cluster

 Establish auditing options

 Add comments to the data dictionary

The CREATE, ALTER, and DROP commands require exclusive access to the

specified object. For example, an ALTER TABLE statement fails if another user

has an open transaction on the specified table.

The GRANT, REVOKE, ANALYZE, AUDIT, and COMMENT commands do not

require exclusive access to the specified object. For example, you can analyze a

table while other users are updating the table.

Oracle implicitly commits the current transaction before and after every DDL

statement.

Many DDL statements may cause Oracle to recompile or reauthorize schema

objects.

DDL Statements are

https://www.geeksforgeeks.org/sql-transactions/

 Self-Instructional Material

 47

Sql queries and sub queries

Notes

CREATE :Use to create objects like CREATE TABLE, CREATE FUNCTION,

 CREATE SYNONYM, CREATE VIEW. Etc.

ALTER :Use to Alter Objects like ALTER TABLE, ALTER USER, ALTER

 TABLESPACE, ALTER DATABASE. Etc.

DROP :Use to Drop Objects like DROP TABLE, DROP USER, DROP

 TABLESPACE, DROP FUNCTION. Etc.

REPLACE :Use to Rename table names.

TRUNCATE :Use to truncate (delete all rows) a table.

 Create

To create tables, views, synonyms, sequences, functions, procedures, packages etc.

Example

To create a table, you can give the following statement

create table emp (empno number(5) primary key,

 name varchar2(20),

 sal number(10,2),

 job varchar2(20),

 mgr number(5),

 Hiredate date,

 comm number(10,2));

Now Suppose you have emp table now you want to create a TAX table with the

following structure and also insert rows of those employees whose salary is above

5000.

Tax

Empno

Tax

Number(5)

Number(10,2)

To do this we can first create TAX table by defining column names and datatypes

and then use INSERT into EMP SELECT …. statement to insert rows from emp

table. like given below.

create table tax (empno number(5), tax number(10,2));

insert into tax select empno,(sal-5000)*0.40

 from emp where sal > 5000;

Instead of executing the above two statements the same result can be achieved by

giving a single CREATE TABLE AS statement.

create table tax as select empno,(sal-5000)*0.4

 as tax from emp where sal>5000

Self-Instructional Material

48

Sql queries and sub queries

Notes

You can also use CREATE TABLE AS statement to create copies of tables. Like to

create a copy EMP table as EMP2 you can give the following statement.

create table emp2 as select * from emp;

To copy tables without rows i.e. to just copy the structure give the following

statement

create table emp2 as select * from emp where 1=2;

Temporary Tables (From Oracle Ver. 8i)

It is also possible to create a temporary table. The definition of a temporary table is

visible to all sessions, but the data in a temporary table is visible only to the session

that inserts the data into the table. You use the CREATE GLOBAL TEMPORARY

TABLE statement to create a temporary table. The ON COMMIT keywords

indicate if the data in the table is transaction-specific (the default) or session-

specific:

 ON COMMIT DELETE ROWS specifies that the temporary table is

transaction specific and Oracle truncates the table (delete all rows) after

each commit.

 ON COMMIT PRESERVE ROWS specifies that the temporary table is

session specific and Oracle truncates the table when you terminate the

session.

This example creates a temporary table that is transaction specific:

CREATE GLOBAL TEMPORARY TABLE taxable_emp

 (empno number(5),

 ename varchar2(20),

 sal number(10,2),

 tax number(10,2))

 ON COMMIT DELETE ROWS;

Indexes can also be created on temporary tables. They are also temporary and the

data in the index has the same session or transaction scope as the data in the

underlying table.

Alter

Use the ALTER TABLE statement to alter the structure of a table.

Examples:

To add new columns addr, city, pin, ph, fax to employee table you can give the

following statement

alter table emp add (addr varchar2(20), city varchar2(20),

 pin varchar2(10),ph varchar2(20));

To modify the datatype and width of a column. For example we you want to

increase the length of the column ename from varchar2(20) to varchar2(30) then

give the following command.

 Self-Instructional Material

 49

Sql queries and sub queries

Notes

alter table emp modify (ename varchar2(30))

To decrease the width of a column the column can be decreased up to largest value

it holds.

alter table emp modify (ename varchar2(15));

The above is possible only if you are using Oracle ver 8i and above. In Oracle 8.0

and 7.3 you cannot decrease the column width directly unless the column is empty.

To change the datatype the column must be empty in All Oracle Versions.

To drop columns.

From Oracle Ver. 8i you can drop columns directly it was not possible in previous

versions.

For example to drop PIN, CITY columns from emp table.

alter table emp drop column (pin, city);

Remember you cannot drop the column if the table is having only one column.

If the column you want to drop is having primary key constraint on it then you have

to give cascade constraint clause.

alter table emp2 drop column (empno) cascade constraints;

To drop columns in previous versions of Oracle8.0 and 7.3. and to change the

column name in all Oracle versions do the following.

For example we want to drop pin and city columns and to change SAL column

name to SALARY.

Step 1: Create a temporary table with desired columns using subquery.

create table temp as select empno, ename,

 sal AS salary, addr, ph from emp;

Step 2: Drop the original table.

drop table emp;

Step 3: Rename the temporary table to the original table.

rename temp to emp;

Rename

Use the RENAME statement to rename a table, view, sequence, or private synonym

for a table, view, or sequence.

Self-Instructional Material

50

Sql queries and sub queries

Notes

 Oracle automatically transfers integrity constraints, indexes, and grants on

the old object to the new object.

 Oracle invalidates all objects that depend on the renamed object, such as

views, synonyms, and stored procedures and functions that refer to a

renamed table.

Example

To rename table emp2 to employee2 you can give the following command.

rename emp2 to employee2

Drop

Use the drop statement to drop tables, functions, procedures, packages, views,

synonym, sequences, tablespaces etc.

Example

The following command drops table emp2

drop table emp2;

If emp2 table is having primary key constraint, to which other tables refer to, then

you have to first drop referential integrity constraint and then drop the table. Or if

you want to drop table by dropping the referential constraints then give the

following command

drop table emp2 cascade constraints;

Truncate

Use the Truncate statement to delete all the rows from table permanently . It is same

as “DELETE FROM <table_name>” except

 Truncate does not generate any rollback data hence, it cannot be roll

backed.

 If any delete triggers are defined on the table. Then the triggers are not fired

 It deallocates free extents from the table. So that the free space can be use

by other tables.

Example

truncate table emp;

If you do not want free space and keep it with the table. Then specify the REUSE

storage clause like this

truncate table emp reuse storage;

 Self-Instructional Material

 51

Sql queries and sub queries

Notes

12. Data Manipulation Language (DML) Statements

Data manipulation language (DML) statements query and manipulate data in

existing schema objects. These statements do not implicitly commit the current

transaction.

The following are the DML statements available in Oracle.

 INSERT :Use to Add Rows to existing table.

 UPDATE :Use to Edit Existing Rows in tables.

 DELETE :Use to Delete Rows from tables.

Insert

Use the Insert Statement to Add records to existing Tables.

Examples.

To add a new row to an emp table.

Insert into emp values (101,’Sami’,’G.Manager’,

 ’8-aug-1998’,2000);

If you want to add a new row by supplying values for some columns not all the

columns then you have to mention the name of the columns in insert statements. For

example the following statement inserts row in emp table by supplying values for

empno, ename, and sal columns only. The Job and Hiredate columns will be null.

Insert into emp (empno,ename,sal) values (102,’Ashi’,5000);

Suppose you want to add rows from one table to another i.e. suppose we have

Old_Emp table and emp table with the following structure

Now we want to add rows from old_emp table to emp table. Then you can give the

following insert statement

Insert into emp (empno, ename, sal)

 select empno, ename, sal from old_emp;

Self-Instructional Material

52

Sql queries and sub queries

Notes

Update

Update statement is used to update rows in existing tables which is in your own

schema or if you have update privilege on them.

For example to raise the salary by Rs.500 of employee number 104. You can give

the following statement.

update emp set sal=sal+500 where empno = 104;

In the above statement if we did not give the where condition then all employees

salary will be raised by Rs. 500. That’s why always specify proper WHERE

condition if don’t want to update all employees.

For example We want to change the name of employee no 102 from ‘Sami’ to

‘Mohd Sami’ and to raise the salary by 10%. Then the statement will be.

update emp set name=’Mohd Sami’,

 sal=sal+(sal*10/100) where empno=102;

Now we want to raise the salary of all employees by 5%.

update emp set sal=sal+(sal*5/100);

Now to change the names of all employees to uppercase.

update emp set name=upper(name);

Suppose We have a student table with the following structure.

Now to compute total which is sum of Maths,Phy and Chem and average.

update student set total=maths+phy+chem,

 average=(maths+phy+chem)/3;

Using Sub Query in the Update Set Clause.

Suppose we added the city column in the employee table and now we want to set

this column with corresponding city column in department table which is join to

employee table on deptno.

update emp set city=(select city from dept

 where deptno= emp.deptno);

Delete

Use the DELETE statement to delete the rows from existing tables which are in

your schema or if you have DELETE privilege on them.

 Self-Instructional Material

 53

Sql queries and sub queries

Notes

For example to delete the employee whose empno is 102.

delete from emp where empno=102;

If you don’t mention the WHERE condition then all rows will be deleted.

Suppose we want to delete all employees whose salary is above 2000. Then give the

following DELETE statement.

delete from emp where salary > 2000;

The following statement has the same effect as the preceding example, but uses a

subquery:

DELETE FROM (SELECT * FROM emp)

 WHERE sal > 2000;

To delete all rows from emp table.

delete from emp;

13. Data Control Language (DCL) using GRANT and REVOKE

Data Control Language (DCL) is used to control privileges in Database. To perform

any operation in the database, such as for creating tables, sequences or views, a user

needs privileges. Privileges are of two types,

 System: This includes permissions for creating session, table, etc and all

types of other system privileges.

 Object: This includes permissions for any command or query to perform

any operation on the database tables.

In DCL we have two commands,

 GRANT: Used to provide any user access privileges or other priviliges for

the database.

 REVOKE: Used to take back permissions from any user.

Allow a User to create session

When we create a user in SQL, it is not even allowed to login and create a session

until and unless proper permissions/priviliges are granted to the user.

Following command can be used to grant the session creating priviliges.

GRANT CREATE SESSION TO username;

Allow a User to create table

To allow a user to create tables in the database, we can use the below command,

GRANT CREATE TABLE TO username;

Self-Instructional Material

54

Sql queries and sub queries

Notes

Grant all privilege to a User

sysdba is a set of priviliges which has all the permissions in it. So if we want to

provide all the privileges to any user, we can simply grant them

the sysdba permission.

GRANT sysdba TO username

Grant permission to create any table

Sometimes user is restricted from creating come tables with names which are

reserved for system tables. But we can grant privileges to a user to create any table

using the below command,

GRANT CREATE ANY TABLE TO username

Grant permission to drop any table

As the title suggests, if you want to allow user to drop any table from the database,

then grant this privilege to the user,

GRANT DROP ANY TABLE TO username

To take back Permissions

And, if you want to take back the privileges from any user, use

the REVOKE command.

REVOKE CREATE TABLE FROM username

 Self-Instructional Material

 55

Sql queries and sub queries

Notes

BLOCK 3: INDEX AND VIEW

An index is a performance-tuning method of allowing faster retrieval of records. An

index creates an entry for each value that appears in the indexed columns. By

default, Oracle creates B-tree indexes.

Create an Index

Syntax

The syntax for creating an index in Oracle is:

CREATE [UNIQUE] INDEX index_name

 ON table_name (column1, column2, ... column_n)

 [COMPUTE STATISTICS];

Unique

It indicates that the combination of values in the indexed columns must be unique.

index_name

The name to assign to the index.

table_name

The name of the table in which to create the index.

column1, column2, ... column_n

The columns to use in the index.

Compute Statistics

It tells Oracle to collect statistics during the creation of the index. The statistics are

then used by the optimizer to choose a "plan of execution" when SQL statements

are executed.

Example

Let's look at an example of how to create an index in Oracle/PLSQL.

For example:

CREATE INDEX supplier_idx ON supplier (supplier_name);

In this example, we've created an index on the supplier table called supplier_idx. It

consists of only one field - the supplier_name field.

We could also create an index with more than one field as in the example below:

CREATE INDEX supplier_idx ON supplier (supplier_name, city);

Self-Instructional Material

56

Sql queries and sub queries

Notes

We could also choose to collect statistics upon creation of the index as follows:

CREATE INDEX supplier_idx

 ON supplier (supplier_name, city)

 COMPUTE STATISTICS;

Create a Function-Based Index

In Oracle, you are not restricted to creating indexes on only columns. You can

create function-based indexes.

Syntax

The syntax for creating a function-based index in Oracle/PLSQL is:

CREATE [UNIQUE] INDEX index_name

 ON table_name (function1, function2, ... function_n)

 [COMPUTE STATISTICS];

Unique

It indicates that the combination of values in the indexed columns must be unique.

index_name

The name to assign to the index.

table_name

The name of the table in which to create the index.

function1, function2, ... function_n

The functions to use in the index.

Compute Statistics

It tells Oracle to collect statistics during the creation of the index. The statistics are

then used by the optimizer to choose a "plan of execution" when SQL statements

are executed.

Example

Let's look at an example of how to create a function-based index in Oracle.

For example:

CREATE INDEX supplier_idx

 ON supplier (UPPER(supplier_name));

In this example, we've created an index based on the uppercase evaluation of

the supplier_name field.

However, to be sure that the Oracle optimizer uses this index when executing your

SQL statements, be sure that UPPER(supplier_name) does not evaluate to a NULL

value. To ensure this, add UPPER(supplier_name) IS NOT NULL to your

WHERE clause as follows:

 Self-Instructional Material

 57

Sql queries and sub queries

Notes

SELECT supplier_id, supplier_name, UPPER(supplier_name)

FROM supplier

WHERE UPPER(supplier_name) IS NOT NULL

ORDER BY UPPER(supplier_name);

Rename an Index

Syntax

The syntax for renaming an index in Oracle is:

ALTER INDEX index_name

 RENAME TO new_index_name;

index_name

The name of the index that you wish to rename.

new_index_name

The new name to assign to the index.

Example

Let's look at an example of how to rename an index in Oracle/PLSQL.

For example:

ALTER INDEX supplier_idx

 RENAME TO supplier_index_name;

In this example, we're renaming the index

called supplier_idx to supplier_index_name.

Collect Statistics on an Index

If you forgot to collect statistics on the index when you first created it or you want

to update the statistics, you can always use the ALTER INDEX command to collect

statistics at a later date.

Syntax

The syntax for collecting statistics on an index in Oracle/PLSQL is:

ALTER INDEX index_name

 REBUILD COMPUTE STATISTICS;

index_name

The index in which to collect statistics.

Example

Let's look at an example of how to collect statistics for an index in Oracle/PLSQL.

For example:

ALTER INDEX supplier_idx

 REBUILD COMPUTE STATISTICS;

Self-Instructional Material

58

Sql queries and sub queries

Notes

In this example, we're collecting statistics for the index called supplier_idx.

Drop an Index

Syntax

The syntax for dropping an index in Oracle/PLSQL is:

DROP INDEX index_name;

index_name

The name of the index to drop.

Example

Let's look at an example of how to drop an index in Oracle/PLSQL.

For example:

DROP INDEX supplier_idx;

In this example, we're dropping an index called supplier_idx.

15. Views

An Oracle VIEW, in essence, is a virtual table that does not physically exist. Rather,

it is created by a query joining one or more tables.

Create VIEW

Syntax

The syntax for the CREATE VIEW Statement in Oracle/PLSQL is:

CREATE VIEW view_name AS

 SELECT columns

 FROM tables

 [WHERE conditions];

view_name

The name of the Oracle VIEW that you wish to create.

WHERE conditions

Optional. The conditions that must be met for the records to be included in the

VIEW.

Example

Here is an example of how to use the Oracle CREATE VIEW:

CREATE VIEW sup_orders AS

 SELECT suppliers.supplier_id, orders.quantity, orders.price

 FROM suppliers

 Self-Instructional Material

 59

Sql queries and sub queries

Notes

 INNER JOIN orders

 ON suppliers.supplier_id = orders.supplier_id

 WHERE suppliers.supplier_name = 'Microsoft';

This Oracle CREATE VIEW example would create a virtual table based on the

result set of the SELECT statement. You can now query the Oracle VIEW as

follows:

SELECT *

FROM sup_orders;

Update VIEW

You can modify the definition of an Oracle VIEW without dropping it by using the

Oracle CREATE OR REPLACE VIEW Statement.

Syntax

The syntax for the CREATE OR REPLACE VIEW Statement in Oracle/PLSQL is:

CREATE OR REPLACE VIEW view_name AS

 SELECT columns

 FROM table

 WHERE conditions;

view_name

The name of the Oracle VIEW that you wish to create or replace.

Example

Here is an example of how you would use the Oracle CREATE OR REPLACE

VIEW Statement:

CREATE or REPLACE VIEW sup_orders AS

 SELECT suppliers.supplier_id, orders.quantity, orders.price

 FROM suppliers

 INNER JOIN orders

 ON suppliers.supplier_id = orders.supplier_id

 WHERE suppliers.supplier_name = 'Apple';

This Oracle CREATE OR REPLACE VIEW example would update the definition

of the Oracle VIEW called sup_orders without dropping it. If the Oracle VIEW did

not yet exist, the VIEW would merely be created for the first time.

Drop VIEW

Once an Oracle VIEW has been created, you can drop it with the Oracle DROP

VIEW Statement.

Syntax

The syntax for the DROP VIEW Statement in Oracle/PLSQL is:

Self-Instructional Material

60

Sql queries and sub queries

Notes

DROP VIEW view_name;

view_name

The name of the view that you wish to drop.

Example

Here is an example of how to use the Oracle DROP VIEW Statement:

DROP VIEW sup_orders;

This Oracle DROP VIEW example would drop/delete the Oracle VIEW

called sup_orders.

16. Partitioning the Tables

 Partitioning enhances the performance, manageability, and availability of a

wide variety of applications and helps reduce the total cost of ownership for

storing large amounts of data.

 Partitioning allows tables, indexes, and index-organized tables to be

subdivided into smaller pieces, enabling these database objects to be

managed and accessed at a finer level of granularity.

 Oracle provides a rich variety of partitioning strategies and extensions to

address every business requirement. Moreover, since it is entirely

transparent, partitioning can be applied to almost any application without

the need for potentially expensive and time consuming application changes.

Range Partitioning Tables

Range partitioning is useful when you have distinct ranges of data you want to store

together. The classic example of this is the use of dates. Partitioning a table using

date ranges allows all data of a similar age to be stored in same partition. Once

historical data is no longer needed the whole partition can be removed. If the table is

indexed correctly search criteria can limit the search to the partitions that hold data

of a correct age.

CREATE TABLE invoices

(invoice_no NUMBER NOT NULL,

 invoice_date DATE NOT NULL,

 comments VARCHAR2(500))

PARTITION BY RANGE (invoice_date)

(PARTITION invoices_q1 VALUES LESS THAN

(TO_DATE('01/04/2019', 'DD/MM/YYYY')) TABLESPACE users,

 PARTITION invoices_q2 VALUES LESS THAN

(TO_DATE('01/07/2019', 'DD/MM/YYYY')) TABLESPACE users,

 PARTITION invoices_q3 VALUES LESS THAN

(TO_DATE('01/09/2019', 'DD/MM/YYYY')) TABLESPACE users,

 PARTITION invoices_q4 VALUES LESS THAN

(TO_DATE('01/01/2020', 'DD/MM/YYYY')) TABLESPACE users);

 Self-Instructional Material

 61

Sql queries and sub queries

Notes

Hash Partitioning Tables

Hash partitioning is useful when there is no obvious range key, or range partitioning

will cause uneven distribution of data. The number of partitions must be a power of

2 (2, 4, 8, 16...) and can be specified by the PARTITIONS...STORE IN clause.

CREATE TABLE invoices

(invoice_no NUMBER NOT NULL,

 invoice_date DATE NOT NULL,

 comments VARCHAR2(500))

PARTITION BY HASH (invoice_no)

PARTITIONS 4

STORE IN (users, users, users, users);

Composite Partitioning Tables

Composite partitioning allows range partitions to be hash subpartitioned on a

different key. The greater number of partitions increases the possiblities for

parallelism and reduces the chances of contention. The following example will

range partition the table on invoice_date and subpartitioned these on the invoice_no

giving a totol of 32 subpartitions.

CREATE TABLE invoices

(invoice_no NUMBER NOT NULL,

 invoice_date DATE NOT NULL,

 comments VARCHAR2(500))

PARTITION BY RANGE (invoice_date)

SUBPARTITION BY HASH (invoice_no)

SUBPARTITIONS 8

(PARTITION invoices_q1 VALUES LESS THAN

(TO_DATE('01/04/2019', 'DD/MM/YYYY')),

 PARTITION invoices_q2 VALUES LESS THAN

(TO_DATE('01/07/2019', 'DD/MM/YYYY')),

 PARTITION invoices_q3 VALUES LESS THAN

(TO_DATE('01/09/2019', 'DD/MM/YYYY')),

 PARTITION invoices_q4 VALUES LESS THAN

(TO_DATE('01/01/2020', 'DD/MM/YYYY'));

17. Locking Tables

The LOCK TABLE statement is used to lock tables, table partitions, or table

subpartitions.

Syntax

The syntax for the LOCK TABLE statement is:

LOCK TABLE tables IN lock_mode MODE [WAIT [, integer] | NOWAIT];

Parameters or Arguments

tables

A comma-delimited list of tables.

lock_mode

Self-Instructional Material

62

Sql queries and sub queries

Notes

It is one of the following values:

lock_mode Explanation

ROW SHARE
Allows concurrent access to the table, but users are prevented

from locking the entire table for exclusive access.

ROW

EXCLUSIVE

Allows concurrent access to the table, but users are prevented

from locking the entire table with exclusive access and

locking the table in share mode.

SHARE UPDATE
Allows concurrent access to the table, but users are prevented

from locking the entire table for exclusive access.

SHARE
Allows concurrent queries but users are prevented from

updating the locked table.

SHARE ROW

EXCLUSIVE

Users can view records in table, but are prevented from

updating the table or from locking the table in SHARE mode.

EXCLUSIVE Allows queries on the locked table, but no other activities.

WAIT

It specifies that the database will wait (up to a certain number of seconds as

specified by integer) to acquire a DML lock.

NOWAIT

It specifies that the database should not wait for a lock to be released.

Example

Let's look at an example of how to use the LOCK TABLE statement in Oracle.

For example:

LOCK TABLE suppliers IN SHARE MODE NOWAIT;

This example would lock the suppliers table in SHARE MODE and not wait for a

lock to be released.

 Self-Instructional Material

 63

Exception handling and pl/sql

Notes

BLOCK 4 : EXCEPTION HANDLING

AND PL/SQL

An exception is an error which disrupts the normal flow of program instructions.

PL/SQL provides us the exception block which raises the exception thus helping the

programmer to find out the fault and resolve it.

There are two types of exceptions defined in PL/SQL

1. User defined exception.

2. System defined exceptions.

Syntax to write an exception

WHEN exception THEN

 statement;

DECLARE

declarations section;

BEGIN

executable command(s);

EXCEPTION

WHEN exception1 THEN

statement1;

WHEN exception2 THEN

statement2;

[WHEN others THEN]

/* default exception handling code */

END;

Note:

When other keyword should be used only at the end of the exception handling block

as no exception handling part present later will get executed as the control will exit

from the block after executing the WHEN OTHERS.

18.1 System defined exceptions:

These exceptions are predefined in PL/SQL which get raised WHEN certain

database rule is violated.

System-defined exceptions are further divided into two categories:

 Named system exceptions.

 Unnamed system exceptions.

Named system exceptions: They have a predefined name by the system like

ACCESS_INTO_NULL, DUP_VAL_ON_INDEX, LOGIN_DENIED etc.

Oracle has a standard set of exceptions already named as follows:

Self-Instructional Material

64

Application development

Notes

Oracle Exception Name
Oracle

Error
Explanation

DUP_VAL_ON_INDEX
ORA-

00001

You tried to execute an INSERT or

UPDATE statement that has

created a duplicate value in a field

restricted by a unique index.

TIMEOUT_ON_RESOURCE
ORA-

00051

You were waiting for a resource

and you timed out.

TRANSACTION_BACKED_OUT
ORA-

00061

The remote portion of a transaction

has rolled back.

INVALID_CURSOR
ORA-

01001

You tried to reference a cursor that

does not yet exist. This may have

happened because you've executed

a FETCH cursor or CLOSE cursor

before OPENing the cursor.

NOT_LOGGED_ON
ORA-

01012

You tried to execute a call to

Oracle before logging in.

LOGIN_DENIED
ORA-

01017

You tried to log into Oracle with an

invalid username/password

combination.

NO_DATA_FOUND
ORA-

01403

You tried one of the following:

You executed a SELECT INTO

statement and no rows were

returned.

You referenced an uninitialized row

in a table.

You read past the end of file with

the UTL_FILE package.

TOO_MANY_ROWS
ORA-

01422

You tried to execute a SELECT

INTO statement and more than one

row was returned.

ZERO_DIVIDE
ORA-

01476

You tried to divide a number by

zero.

INVALID_NUMBER
ORA-

01722

You tried to execute a SQL

statement that tried to convert a

string to a number, but it was

unsuccessful.

STORAGE_ERROR
ORA-

06500

You ran out of memory or memory

was corrupted.

PROGRAM_ERROR
ORA-

06501

This is a generic "Contact Oracle

support" message because an

internal problem was encountered.

VALUE_ERROR
ORA-

06502

You tried to perform an operation

and there was a error on a

conversion, truncation, or invalid

constraining of numeric or

character data.

CURSOR_ALREADY_OPEN
ORA-

06511

You tried to open a cursor that is

already open.

So we will discuss some of the most commonly used exceptions:

Lets create a table marks.

create table marks(g_id int , g_name varchar(20), marks int);

 Self-Instructional Material

 65

Exception handling and pl/sql

Notes

insert into marks values(1, 'Suraj',100);

insert into marks values(2, 'Praveen',97);

insert into marks values(3, 'Jessie', 99);

i. NO_DATA_FOUND:

It is raised WHEN a SELECT INTO statement returns no rows.

For eg:

DECLARE

 temp varchar(20);

BEGIN

 SELECT g_id into temp from geeks where g_name='suresh';

exception

 WHEN no_data_found THEN

 dbms_output.put_line('ERROR');

 dbms_output.put_line('there is no name as');

 dbms_output.put_line(' suresh in marks table');

end;

Output:

ERROR

there is no name as suresh in marks table

ii. TOO_MANY_ROWS:

It is raised WHEN a SELECT INTO statement returns more than one row.

DECLARE

 temp varchar(20);

BEGIN

-- raises an exception as SELECT

-- into trying to return too many rows

 SELECT g_name into temp from geeks;

 dbms_output.put_line(temp);

EXCEPTION

 WHEN too_many_rows THEN

 dbms_output.put_line('error trying to SELECT too many rows');

end;

Output:

error trying to SELECT too many rows

iii. VALUE_ERROR:

This error is raised WHEN a statement is executed that resulted in an arithmetic,

numeric, string, conversion, or constraint error. This error mainly results from

programmer error or invalid data input.

Self-Instructional Material

66

Application development

Notes

DECLARE

 temp number;

BEGIN

 SELECT g_name into temp from geeks where g_name='Suraj';

 dbms_output.put_line('the g_name is '||temp);

EXCEPTION

 WHEN value_error THEN

 dbms_output.put_line('Error');

 dbms_output.put_line('Change data type of temp to varchar(20)');

END;

Output:

Error

Change data type of temp to varchar(20)

iv. ZERO_DIVIDE

raises exception WHEN dividing with zero.

DECLARE

 a int:=10;

 b int:=0;

 answer int;

BEGIN

 answer:=a/b;

 dbms_output.put_line('the result after division is'||answer);

exception

 WHEN zero_divide THEN

 dbms_output.put_line('dividing by zero please check the values again');

 dbms_output.put_line('the value of a is '||a);

 dbms_output.put_line('the value of b is '||b);

END;

Output:

dividing by zero please check the values again

the value of a is 10

the value of b is 0

18.2 User defined exceptions:

This type of users can create their own exceptions according to the need and to raise

these exceptions explicitly raise command is used.

Example:

 Self-Instructional Material

 67

Exception handling and pl/sql

Notes

 Divide non-negative integer x by y such that the result is greater than or

equal to 1.

From the given question we can conclude that there exist two exceptions

 Division be zero.

 If result is greater than or equal to 1 means y is less than or equal to x.

DECLARE

 x int:=&x; /*taking value at run time*/

 y int:=&y;

 div_r float;

 exp1 EXCEPTION;

 exp2 EXCEPTION;

BEGIN

 IF y=0 then

 raise exp1;

 ELSEIF y > x then

 raise exp2;

 ELSE

 div_r:= x / y;

 dbms_output.put_line('the result is '||div_r);

 END IF;

EXCEPTION

 WHEN exp1 THEN

 dbms_output.put_line('Error');

 dbms_output.put_line('division by zero not allowed');

 WHEN exp2 THEN

 dbms_output.put_line('Error');

 dbms_output.put_line('y is greater than x please check the input');

END;

Input 1: x = 20

 y = 10

Output: the result is 2

Input 2: x = 20

 y = 0

Output:

Error

division by zero not allowed

Input 3: x=20

 y = 30

Self-Instructional Material

68

Application development

Notes

Output:<.em>

Error

y is greater than x please check the input

RAISE_APPLICATION_ERROR:

It is used to display user-defined error messages with error number whose range is

in between -20000 and -20999. When RAISE_APPLICATION_ERROR executes it

returns error message and error code which looks same as Oracle built-in error.

Example:

DECLARE

 myex EXCEPTION;

 n NUMBER :=10;

BEGIN

 FOR i IN 1..n LOOP

 dbms_output.put_line(i*i);

 IF i*i=36 THEN

 RAISE myex;

 END IF;

 END LOOP;

EXCEPTION

 WHEN myex THEN

 RAISE_APPLICATION_ERROR(-20015, 'Welcome to ALU');

END;

Output:

Error report:

ORA-20015: Welcome to ALU

ORA-06512: at line 13

1

4

9

16

25

36

19. Cursors

In Oracle, a cursor is a mechanism by which you can assign a name to a SELECT

statement and manipulate the information within that SQL statement.

Oracle creates a memory area, known as the context area, for processing an SQL

statement, which contains all the information needed for processing the statement;

for example, the number of rows processed, etc.

A cursor is a pointer to this context area. PL/SQL controls the context area through

a cursor. A cursor holds the rows (one or more) returned by a SQL statement. The

set of rows the cursor holds is referred to as the active set.

You can name a cursor so that it could be referred to in a program to fetch and

process the rows returned by the SQL statement, one at a time.

 Self-Instructional Material

 69

Exception handling and pl/sql

Notes

There are two types of cursors −

 Implicit cursors

 Explicit cursors

Implicit Cursors

Implicit cursors are automatically created by Oracle whenever an SQL statement is

executed, when there is no explicit cursor for the statement. Programmers cannot

control the implicit cursors and the information in it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an

implicit cursor is associated with this statement. For INSERT operations, the cursor

holds the data that needs to be inserted. For UPDATE and DELETE operations, the

cursor identifies the rows that would be affected.

In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor,

which always has attributes such as %FOUND, %ISOPEN, %NOTFOUND,

and %ROWCOUNT. The SQL cursor has additional

attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS, designed for

use with the FORALL statement.

The following table provides the description of the most used attributes –

S.No Attribute & Description

1

%FOUND
Returns TRUE if an INSERT, UPDATE, or DELETE statement affected

one or more rows or a SELECT INTO statement returned one or more rows.

Otherwise, it returns FALSE.

2

%NOTFOUND
The logical opposite of %FOUND. It returns TRUE if an INSERT,

UPDATE, or DELETE statement affected no rows, or a SELECT INTO

statement returned no rows. Otherwise, it returns FALSE.

3
%ISOPEN
Always returns FALSE for implicit cursors, because Oracle closes the SQL

cursor automatically after executing its associated SQL statement.

4
%ROWCOUNT
Returns the number of rows affected by an INSERT, UPDATE, or DELETE

statement, or returned by a SELECT INTO statement.

Any SQL cursor attribute will be accessed as sql%attribute_name as shown below

in the example.

Example

We will be using the CUSTOMERS table we had created and used in the previous

chapters.

Self-Instructional Material

70

Application development

Notes

Select * from customers;

ID Name Age Address Salary

1 Ramesh 32 Chennai 35000

2 Suresh 26 Trichy 20000

3 Kumar 28 Karaikudi 30000

4 Malik 31 Madurai 40000

5 Suman 27 Karur 54000

6 Chitra 30 Dindigul 45000

The following program will update the table and increase the salary of each

customer by 500 and use the SQL%ROWCOUNT attribute to determine the

number of rows affected −

DECLARE

 total_rows number(2);

BEGIN

 UPDATE customers SET salary = salary + 500;

 IF sql%notfound THEN

 dbms_output.put_line('no customers selected');

 ELSIF sql%found THEN

 total_rows := sql%rowcount;

 dbms_output.put_line(total_rows || ' customers selected ');

 END IF;

END;

/

When the above code is executed at the SQL prompt, it produces the following

result −

6 customers selected

PL/SQL procedure successfully completed.

If you check the records in customers table, you will find that the rows have been

updated −

Select * from customers;

ID Name Age Address Salary

1 Ramesh 32 Chennai 35500

2 Suresh 26 Trichy 20500

3 Kumar 28 Karaikudi 30500

4 Malik 31 Madurai 40500

5 Suman 27 Karur 54500

6 Chitra 30 Dindigul 45500

 Self-Instructional Material

 71

Exception handling and pl/sql

Notes

Explicit Cursors

Explicit cursors are programmer-defined cursors for gaining more control over

the context area.

An explicit cursor should be defined in the declaration section of the PL/SQL

Block. It is created on a SELECT Statement which returns more than one row.

The syntax for creating an explicit cursor is −

CURSOR cursor_name IS select_statement;

Working with an explicit cursor includes the following steps −

 Declaring the cursor for initializing the memory

 Opening the cursor for allocating the memory

 Fetching the cursor for retrieving the data

 Closing the cursor to release the allocated memory

Declaring the Cursor

Declaring the cursor defines the cursor with a name and the associated SELECT

statement. For example −

CURSOR c_customers IS

 SELECT id, name, address FROM customers;

Opening the Cursor

Opening the cursor allocates the memory for the cursor and makes it ready for

fetching the rows returned by the SQL statement into it.

For example, we will open the above defined cursor as follows −

OPEN c_customers;

Fetching the Cursor

Fetching the cursor involves accessing one row at a time. For example, we will

fetch rows from the above-opened cursor as follows −

FETCH c_customers INTO c_id, c_name, c_addr;

Closing the Cursor

Closing the cursor means releasing the allocated memory. For example, we will

close the above-opened cursor as follows −

CLOSE c_customers;

Example

Following is a complete example to illustrate the concepts of explicit cursors

Self-Instructional Material

72

Application development

Notes

DECLARE

 c_id customers.id%type;

 c_name customerS.No.ame%type;

 c_addr customers.address%type;

 CURSOR c_customers is

 SELECT id, name, address FROM customers;

BEGIN

 OPEN c_customers;

 LOOP

 FETCH c_customers into c_id, c_name, c_addr;

 EXIT WHEN c_customers%notfound;

 dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_addr);

 END LOOP;

 CLOSE c_customers;

END;

/

When the above code is executed at the SQL prompt, it produces the following

result −

1 Ramesh Chennai

2 Suresh Trichy

3 Kumar Karaikudi

4 Malik Madurai

5 Suman Karur

6 Chitra Dindigul

PL/SQL procedure successfully completed.

20. Triggers

Triggers are stored programs, which are automatically executed or fired when some

events occur.

Triggers are, in fact, written to be executed in response to any of the following

events −

 A database manipulation (DML) statement (DELETE, INSERT, or

UPDATE)

 A database definition (DDL) statement (CREATE, ALTER, or DROP).

 A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP,

or SHUTDOWN).

Triggers can be defined on the table, view, schema, or database with which the

event is associated.

Benefits of Triggers

Triggers can be written for the following purposes −

 Generating some derived column values automatically

 Enforcing referential integrity

 Event logging and storing information on table access

 Auditing

 Synchronous replication of tables

 Imposing security authorizations

 Self-Instructional Material

 73

Exception handling and pl/sql

Notes

 Preventing invalid transactions

Creating Triggers

The syntax for creating a trigger is −

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

Where,

 CREATE [OR REPLACE] TRIGGER trigger_name − Creates or replaces

an existing trigger with the trigger_name.

 {BEFORE | AFTER | INSTEAD OF} − This specifies when the trigger will

be executed. The INSTEAD OF clause is used for creating trigger on a

view.

 {INSERT [OR] | UPDATE [OR] | DELETE} − This specifies the DML

operation.

 [OF col_name] − This specifies the column name that will be updated.

 [ON table_name] − This specifies the name of the table associated with the

trigger.

 [REFERENCING OLD AS o NEW AS n] − This allows you to refer new

and old values for various DML statements, such as INSERT, UPDATE,

and DELETE.

 [FOR EACH ROW] − This specifies a row-level trigger, i.e., the trigger

will be executed for each row being affected. Otherwise the trigger will

execute just once when the SQL statement is executed, which is called a

table level trigger.

 WHEN (condition) − This provides a condition for rows for which the

trigger would fire. This clause is valid only for row-level triggers.

Example

To start with, we will be using the CUSTOMERS table we had created and used in

the previous chapters −

Select * from customers;

Self-Instructional Material

74

Application development

Notes

ID Name Age Address Salary

1 Ramesh 32 Chennai 35000

2 Suresh 26 Trichy 20000

3 Kumar 28 Karaikudi 30000

4 Malik 31 Madurai 40000

5 Suman 27 Karur 54000

6 Chitra 30 Dindigul 45000

The following program creates a row-level trigger for the customers table that

would fire for INSERT or UPDATE or DELETE operations performed on the

CUSTOMERS table.

This trigger will display the salary difference between the old values and new

values −

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON customers

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

 sal_diff number;

BEGIN

 sal_diff := :NEW.salary - :OLD.salary;

 dbms_output.put_line('Old salary: ' || :OLD.salary);

 dbms_output.put_line('New salary: ' || :NEW.salary);

 dbms_output.put_line('Salary difference: ' || sal_diff);

END;

/

When the above code is executed at the SQL prompt, it produces the following

result −

Trigger created.

The following points need to be considered here −

 OLD and NEW references are not available for table-level triggers, rather

you can use them for record-level triggers.

 If you want to query the table in the same trigger, then you should use the

AFTER keyword, because triggers can query the table or change it again

only after the initial changes are applied and the table is back in a consistent

state.

 The above trigger has been written in such a way that it will fire before any

DELETE or INSERT or UPDATE operation on the table, but you can write

your trigger on a single or multiple operations, for example BEFORE

DELETE, which will fire whenever a record will be deleted using the

DELETE operation on the table.

Triggering a Trigger

Let us perform some DML operations on the CUSTOMERS table. Here is one

INSERT statement, which will create a new record in the table −

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

 Self-Instructional Material

 75

Exception handling and pl/sql

Notes

VALUES (7, 'Karthick', 22, 'Villupuram', 7500.00);

When a record is created in the CUSTOMERS table, the above create

trigger, display_salary_changes will be fired and it will display the following

result −

Old salary:

New salary: 7500

Salary difference:

Because this is a new record, old salary is not available and the above result comes

as null.

Let us now perform one more DML operation on the CUSTOMERS table. The

UPDATE statement will update an existing record in the table −

UPDATE customers

SET salary = salary + 500

WHERE id = 2;

When a record is updated in the CUSTOMERS table, the above create

trigger, display_salary_changes will be fired and it will display the following

result −

Old salary: 1500

New salary: 2000

Salary difference: 500

21. Packages

Packages are schema objects that groups logically related PL/SQL types, variables,

and subprograms.

A package will have two mandatory parts −

 Package specification

 Package body or definition

Package Specification

The specification is the interface to the package. It just DECLARES the types,

variables, constants, exceptions, cursors, and subprograms that can be referenced

from outside the package. In other words, it contains all information about the

content of the package, but excludes the code for the subprograms.

All objects placed in the specification are called public objects. Any subprogram

not in the package specification but coded in the package body is called

a private object.

The following code snippet shows a package specification having a single

procedure.

You can have many global variables defined and multiple procedures or functions

inside a package.

CREATE PACKAGE cust_sal AS

Self-Instructional Material

76

Application development

Notes

 PROCEDURE find_sal(c_id customers.id%type);

END cust_sal;

/

When the above code is executed at the SQL prompt, it produces the following

result −

Package created.

Package Body

The package body has the codes for various methods declared in the package

specification and other private declarations, which are hidden from the code outside

the package.

The CREATE PACKAGE BODY Statement is used for creating the package

body.

The following code snippet shows the package body declaration for

the cust_sal package created above for the CUSTOMERS table already been

created.

CREATE OR REPLACE PACKAGE BODY cust_sal AS

 PROCEDURE find_sal(c_id customers.id%TYPE) IS

 c_sal customers.salary%TYPE;

 BEGIN

 SELECT salary INTO c_sal

 FROM customers

 WHERE id = c_id;

 dbms_output.put_line('Salary: '|| c_sal);

 END find_sal;

END cust_sal;

/

When the above code is executed at the SQL prompt, it produces the following

result −

Package body created.

Using the Package Elements

The package elements (variables, procedures or functions) are accessed with the

following syntax −

package_name.element_name;

Consider, we already have created the above package in our database schema, the

following program uses the find_sal method of the cust_sal package −

DECLARE

 code customers.id%type := &cc_id;

BEGIN

 cust_sal.find_sal(code);

END;

/

When the above code is executed at the SQL prompt, it prompts to enter the

customer ID and when you enter an ID, it displays the corresponding salary as

follows −

 Self-Instructional Material

 77

Exception handling and pl/sql

Notes

Enter value for cc_id: 1

Salary: 3000

PL/SQL procedure successfully completed.

Example

The following program provides a more complete package. We will use the

CUSTOMERS table stored in our database with the following records −

Select * from customers;

ID Name Age Address Salary

1 Ramesh 32 Chennai 35000

2 Suresh 26 Trichy 20000

3 Kumar 28 Karaikudi 30000

4 Malik 31 Madurai 40000

5 Suman 27 Karur 54000

6 Chitra 30 Dindigul 45000

The Package Specification

CREATE OR REPLACE PACKAGE c_package AS

 -- Adds a customer

 PROCEDURE addCustomer(c_id customers.id%type,

 c_name customerS.No.ame%type,

 c_age customers.age%type,

 c_addr customers.address%type,

 c_sal customers.salary%type);

 -- Removes a customer

 PROCEDURE delCustomer(c_id customers.id%TYPE);

 --Lists all customers

 PROCEDURE listCustomer;

END c_package;

/

When the above code is executed at the SQL prompt, it creates the above

package and displays the following result −

Package created.

Creating the Package Body

CREATE OR REPLACE PACKAGE BODY c_package AS

 PROCEDURE addCustomer(c_id customers.id%type,

 c_name customerS.No.ame%type,

 c_age customers.age%type,

 c_addr customers.address%type,

 c_sal customers.salary%type)

 IS

Self-Instructional Material

78

Application development

Notes

 BEGIN

 INSERT INTO customers (id,name,age,address,salary)

 VALUES(c_id, c_name, c_age, c_addr, c_sal);

 END addCustomer;

 PROCEDURE delCustomer(c_id customers.id%type) IS

 BEGIN

 DELETE FROM customers

 WHERE id = c_id;

 END delCustomer;

 PROCEDURE listCustomer IS

 CURSOR c_customers is

 SELECT name FROM customers;

 TYPE c_list is TABLE OF customers.Name%type;

 name_list c_list := c_list();

 counter integer :=0;

 BEGIN

 FOR n IN c_customers LOOP

 counter := counter +1;

 name_list.extend;

 name_list(counter) := n.name;

 dbms_output.put_line('Customer('||counter||')'||name_list

(counter));

 END LOOP;

 END listCustomer;

END c_package;

/

The above example makes use of the nested table. We will discuss the concept of

nested table in the next chapter.

When the above code is executed at the SQL prompt, it produces the following

result −

Package body created.

Using the Package

The following program uses the methods declared and defined in the

package c_package.

DECLARE

 code customers.id%type:= 8;

BEGIN

 c_package.addcustomer(7, 'Rajnish', 25, 'Chennai', 3500);

 c_package.addcustomer(8, 'Subha', 32, 'Pudukkottai', 7500);

 c_package.listcustomer;

 c_package.delcustomer(code);

 c_package.listcustomer;

END;

/

 Self-Instructional Material

 79

Exception handling and pl/sql

Notes

When the above code is executed at the SQL prompt, it produces the following

result −

Customer(1): Ramesh

Customer(2): Suresh

Customer(3): Kumar

Customer(4): Malik

Customer(5): Suman

Customer(6): Chitra

Customer(7): Rajnish

Customer(8): Subha

Customer(1): Ramesh

Customer(2): Suresh

Customer(3): Kumar

Customer(4): Malik

Customer(5): Suman

Customer(6): Chitra

Customer(7): Rajnish

PL/SQL procedure successfully completed

22. Functions

A function is same as a procedure except that it returns a value. Therefore, all the

discussions of the previous chapter are true for functions too.

Creating a Function

A standalone function is created using the CREATE FUNCTION statement. The

simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as

follows −

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

 < function_body >

END [function_name];

Where,

 function-name specifies the name of the function.

 [OR REPLACE] option allows the modification of an existing function.

 The optional parameter list contains name, mode and types of the

parameters. IN represents the value that will be passed from outside and

OUT represents the parameter that will be used to return a value outside of

the procedure.

 The function must contain a return statement.

 The RETURN clause specifies the data type you are going to return from the

function.

 function-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone

function.

Self-Instructional Material

80

Application development

Notes

Example

The following example illustrates how to create and call a standalone function. This

function returns the total number of CUSTOMERS in the customers table.

Select * from customers;

ID Name Age Address Salary

1 Ramesh 32 Chennai 35000

2 Suresh 26 Trichy 20000

3 Kumar 28 Karaikudi 30000

4 Malik 31 Madurai 40000

5 Suman 27 Karur 54000

6 Chitra 30 Dindigul 45000

CREATE OR REPLACE FUNCTION totalCustomers

RETURN number IS

 total number(2) := 0;

BEGIN

 SELECT count(*) into total

 FROM customers;

 RETURN total;

END;

/

When the above code is executed using the SQL prompt, it will produce the

following result −

Function created.

Calling a Function

While creating a function, you give a definition of what the function has to do. To

use a function, you will have to call that function to perform the defined task. When

a program calls a function, the program control is transferred to the called function.

A called function performs the defined task and when its return statement is

executed or when the last end statement is reached, it returns the program control

back to the main program.

To call a function, you simply need to pass the required parameters along with the

function name and if the function returns a value, then you can store the returned

value.

Following program calls the function totalCustomers from an anonymous block −

DECLARE

 c number(2);

BEGIN

 c := totalCustomers();

 Self-Instructional Material

 81

Exception handling and pl/sql

Notes

 dbms_output.put_line('Total no. of Customers: ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the following

result −

Total no. of Customers: 6

PL/SQL procedure successfully completed.

Example

The following example demonstrates Declaring, Defining, and Invoking a Simple

PL/SQL Function that computes and returns the maximum of two values.

DECLARE

 a number;

 b number;

 c number;

FUNCTION findMax(x IN number, y IN number)

RETURN number

IS

 z number;

BEGIN

 IF x > y THEN

 z:= x;

 ELSE

 Z:= y;

 END IF;

 RETURN z;

END;

BEGIN

 a:= 23;

 b:= 45;

 c := findMax(a, b);

 dbms_output.put_line(' Maximum of (23,45): ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the following

result −

Maximum of (23,45): 45

PL/SQL procedure successfully completed.

PL/SQL Recursive Functions

We have seen that a program or subprogram may call another subprogram. When a

subprogram calls itself, it is referred to as a recursive call and the process is known

as recursion.

To illustrate the concept, let us calculate the factorial of a number. Factorial of a

number n is defined as −

Self-Instructional Material

82

Application development

Notes

n! = n*(n-1)!

 = n*(n-1)*(n-2)!

 ...

 = n*(n-1)*(n-2)*(n-3)... 1

The following program calculates the factorial of a given number by calling itself

recursively −

DECLARE

 num number;

 factorial number;

FUNCTION fact(x number)

RETURN number

IS

 f number;

BEGIN

 IF x=0 THEN

 f := 1;

 ELSE

 f := x * fact(x-1);

 END IF;

RETURN f;

END;

BEGIN

 num:= 6;

 factorial := fact(num);

 dbms_output.put_line(' Factorial '|| num || ' is ' || factorial);

END;

/

When the above code is executed at the SQL prompt, it produces the following

result −

Factorial 6 is 720

PL/SQL procedure successfully completed.

 Self-Instructional Material

 83

Application development

Notes

BLOCK 5 : APPLICATION DEVELOPMENT

Library Information System

The following section describes the example of database designed for Library

Information System. Here, the General Library considered for design and

development.

The relations / tables for Library Information System are as follows:

 Book_details

 Publisher_details

 Author_details

 Member_details

 Borrow_details

The attributes of each relation / table:

Table: Publisher_details

Attribute Name Type Size

Publisher_id Varchar2 5

Publisher_name Varchar2 30

Publisher_city Varchar2 20

Table: Author_details

Attribute Name Type Size

Author_id Varchar2 5

Author_name Varchar2 30

Author_Country Varchar2 20

Table: Book_details

Attribute Name Type Size

Book_id Varchar2 5

Book_name Varchar2 30

Prize Number 6,2

Edition Number 2

Publisher_id Varchar2 5

Author_id Varchar2 5

Table: Member_details

Attribute Name Type Size

Member_id Varchar2 5

Member_name Varchar2 30

Member_city Varchar2 20

Member_phone Number 10

Last_mem_paid Date

Self-Instructional Material

84

Application development

Notes

Table: Borrow_details

Attribute Name Type Size

Book_id Varchar2 5

Member_id Varchar2 5

Borrow_date Date

Return_date Date

Table creation:

Publisher_details

Create table Publisher_details (

 Publisher_id varchar2(5) primary key,

 Publisher_name varchar2(30) not null,

 Publisher_city varchar2(20)

);

Author_details

Create table Author_details (

 Author_id varchar2(5) primary key,

 Author_name varchar2(30) not null,

 Author_country varchar2(20)

);

Book_details

Create table Book_details (

 Book_id varchar2(5) primary key,

 Book_name varchar2(30) not null,

 Prize number(6,2),

 Edition number(2),

 Publisher_id varchar2(5) references Publihser_details(Publihser_id),

 Author_id varchar2(5) references Author_details(Author_id)

);

Member_details

Create table Member_details (

 Member_id varchar2(5) primary key,

 Member_name varchar2(30) not null,

 Member_city varchar2(20),

 Member_phone number(10) unique,

 Mem_last_paid date

);

Borrow_details

Create table Borrow_details (

 Member_id varchar2(5) references Member_details(Member_id),

 Book_id varchar2(5) references Book_details(Book_id),

 Borrow_date date,

Return_date date,

 Self-Instructional Material

 85

Application development

Notes

);

Insert queries:

Insert into Publisher_details values (‘P1001’, ‘PHI’, ‘New Delhi’);

Insert into Publisher_details values (‘P1245’, ‘Macmillan India’, ‘New Delhi’);

Insert into Publisher_details values (‘P2416’, ‘Emerald Publishing’, ‘Chennai’);

Insert into Author_details values (‘A1241’, ‘C J Date’, ‘USA’);

Insert into Author_details values (‘A2413’, ‘Pressman’, ‘USA’);

Insert into Author_details values (‘A1416’, ‘C Muthu’, ‘India’);

Insert into Book_details values (‘B1011’, ‘Database Systems’, 850.00, 4, ‘P1001’,

‘A1241’);

Insert into Book_details values (‘B2111’, ‘Software Engineering’, 1150.00, 6,

‘P1245’, ‘A2413’);

Insert into Book_details values (‘B1456’, ‘Java Programming’, 650.00, 2, ‘P2416’,

‘A1416’);

Insert into Member_details values (‘M1234’, ‘R. Suresh’, ‘Karaikudi’, 9876567890,

‘03/07/2019’);

Insert into Member_details values (‘M2654’, ‘K. Mohamed’, ‘Devakottai’,

6345789765, ‘12/08/2019’);

Insert into Member_details values (‘M3124’, ‘M. Sunil’, ‘Karaikudi’, 9786956432,

‘03/06/2019’);

Insert into Borrow_details values (‘M1234’, ‘B1011’, ‘13/09/2019’, ‘28/09/2019’);

Insert into Borrow_details values (‘M2654’, ‘B1456’, ‘03/09/2019’, ‘18/09/2019’);

Insert into Borrow_details values (‘M3124’, ‘B2111’, ‘16/08/2019’, ‘30/08/2019’);

Queries:
 Display the members who are from the city ‘Karaikudi’

 Display the details of member, who borrowed book on ‘03/09/2019’

 Display the author details of the book ‘Software Engineering’

 Update the phone number of M. Sunil as 9865782528

Answers:

 Display the members who are from the city ‘Karaikudi’

Select * from member_details where city=’Karaikudi’

Member_id Member_name Member_city Member_phone Mem_last_paid

M1234 R. Suresh Karaikudi 9876567890 03/07/2019

M3124 M. Sunil Karaikudi 9786956432 03/06/2019

 Display the details of member, who borrowed book on ‘03/09/2019’

Self-Instructional Material

86

Application development

Notes

Select * from member_details where member_id = (select member_id from

borrow_details where borrow_date=’03/09/2019’);

Member_id Member_name Member_city Member_phone Mem_last_paid

M2654 K. Mohamed Devakottai 6345789765 12/08/2019

 Display the author details of the book ‘Software Engineering’

Select * from author_details where author_id = (select author_id from

borrow_details where book_id = (select book_id from book_details where

book_name=’Software Engineering));

Author_id Author_name Author_country

A2413 Pressman USA

 Update the phone number of M. Sunil as 9865782528

Update member_details set member_phone = 9865782528 where

member_name = ‘M.Sunil’;

Member_id Member_name Member_city Member_phone Mem_last_paid

M3124 M. Sunil Karaikudi 9865782528 03/06/2019

References:

 https://www.techonthenet.com/oracle/index.php

 https://www.oracletutorial.com/

 https://oracle-base.com/articles/8i/

 https://www.tutorialspoint.com/plsql/

 Raghurama Krishnan, Johannes Gehrke, Data base Management Systems,

3rd Edition, TATA McGrawHill.2003.

 Silberschatz, Korth, Data base System Concepts, 6
th
 Edition, Tata McGraw

Hill, 2011

 Rajeeb C. Chatterjee, Learning Oracle SQL and PL/SQL: A Simplified

Guide, PHI, 2012

87

 RDBMS – Lab

 NOTES
NOTES

Self-Instructional Material

MODEL QUESTION PAPER

RELATIONAL DATABASE MANAGEMENT SYSTEM

(RDBMS) - LAB

1. a). Create the following table with 5 rows and perform the SQL

operation:

 Library (Book_id, Book_name, Barrower_Name, Subs_id,

Barrow_date)

 Display the details of Books and its Barrower on a specific

date

 b). Design and Develop an application for student mark sheet

processing.

2. a). Create the following table with 5 rows and perform the SQL

operation:

 Student (Reg_No, Name, Mark1, Mark2, Mark3)

 Display the details of students who got less than 40 marks

in any one of the subjects

 b). Design and Develop an application for Electricity bill processing.

3. a). Create the following table with 5 rows and perform the SQL

operation:

 Shop (item_id, item_name, prize, exp_date, qty)

 Display the details of items with stock is less than 10 in

hand

 b). Design and Develop an application for Library Information

Management System.

4. a). Create the following table with 5 rows and perform the SQL

operation:

 EB_Bill (cust_id, cust_name, pre_reading, curr_reading,

net_usage, amount)

 Update the net_usage by processing curr_reading and

pre_reading

 b). Develop a PL/SQL block to calculate amount using the

following calculations:

 Net_usage * Rs. 1.50 if net_usage up to 100

 Net_usage * Rs. 2.50 if net_usage > 100 and <= 200

 Net_usage * Rs. 3.00 if net_usage > 200

88

 RDBMS - Lab

 NOTES
NOTES

Self-Instructional Material

5. a). Create the following table with 5 rows and perform the SQL

operation:

 SB_Account (cust_id, cust_name, balance)

 Display the customer details whose balance is less than

1000

 b). Develop a PL/SQL block to illustrate the usage of cursor for an

application of your own choice

6. a). Create the following table with 5 rows and perform the SQL

operation:

 Library (Book_id, Book_name, Barrower_Name, Subs_id,

Barrow_date)

 Display the details of Books available with a particular

barrower

 b). Design and Develop an application for pay roll processing.

7. a). Create the following table with 5 rows and perform the SQL

operation:

 product (product_id, name, manuf_date, unit_prize)

 Display the details of products under Rs. 500 as its

unit_prize

 b). Develop a PL/SQL block to illustrate the usage of trigger for an

application of your own choice

8. a). Create the following table with 5 rows and perform the SQL

operation:

 Train_booking (train_id, train_name, journey_date,

seats_empty)

 Display the details of trains with empty seats > 250

 b). Design and Develop an application for Gas booking.

